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Discovery of neutrino oscillations is one the most important recent
discoveries in particle physics

It is a common opinion that small neutrino masses and peculiar
neutrino mixing is a signature of a new beyond the Standard

Model Physics
In the next generation of neutrino oscillation experiments (Super
beam, β-beam, Neutrino Factory) a very high accuracy in the

measurement of neutrino oscillation parameters is planned
Are we sure that the theory of neutrino oscillations is fully

justified? Are there open problems in the theory?



Investigation of neutrino oscillations is based on the
following assumptions

1. Neutrino interaction is the Standard Model CC and NC
interaction. The standard leptonic CC is given by

jCC
α (x) = 2

∑

l=e,µ,τ

ν̄lL(x) γα lL(x)

2. Neutrino mixing

νlL(x) =
3∑

i=1

Uli νiL(x)

U is an unitary PMNS mixing matrix and νi (x) is the field of
neutrino (Majorana or Dirac) with mass mk

This last relation is the relation between fields. What are
observable consequences for neutrino oscillations?



All existing neutrino oscillation data can be described if we assume
that

I The number of massive neutrinos is equal to the number of
the flavor neutrinos (three)

I The neutrino transition probability is given by the expression

P(νl → νl ′) = |
3∑

i=1

Ul ′ie
−i∆m2

ki
L

2E U∗
li |2

∆m2
ki = m2

i −m2
k , k is fixed

P(νl → νl ′) depends on ∆m2
12, ∆m2

23, θ12, θ23, θ13, δ



Two neutrino oscillation parameters are small

∆m2
12

∆m2
23

' 3 · 10−2, sin2 θ13 . 5 · 10−2

In the leading approximation
∆m2

23
L
2E & 1 (atmospheric and LBL experiments)

P(νµ → νµ) = 1− 1

2
sin2 2θ23(1− cos∆m2

23
L

2E
)

(νµ ¿ ντ )
∆m2

12
L
2E & 1 (KamLAND experiment)

P(ν̄e → ν̄e) = 1− 1

2
sin2 2θ12(1− cos∆m2

12
L

2E
)

(ν̄e ¿ ν̄µ,τ )
Solar neutrino data are described by two-neutrino νe survival
probability in matter which depends on ∆m2

12 and sin2 θ12

In the leading approximation decoupled two-neutrino oscillations in
two regions of L

E



From the analysis of the data of the atmospheric S-K experiment
the following 90% CL ranges were obtained

1.9 · 10−3 ≤ ∆m2
23 ≤ 3.1 · 10−3eV2, sin2 2θ23 > 0.9.

The results of the S-K experiment have been confirmed by the
accelerator K2K and MINOS LBL neutrino oscillations
experiments. From the analysis of the MINOS data

∆m2
23 = (2.38+0.20

−0.16) · 10−3eV2, sin2 2θ23 > 0.84 (90% CL)

From the global analysis of the data of reactor KamLAND
experiment and the data of the solar neutrino experiments it was

found

∆m2
12 = (7.59+0.21

−0.21) · 10−5 eV2, tan2 θ12 = 0.47+0.06
−0.05



Neutrino production, propagation and detection in the case
of the neutrino mixing

Let us consider a CC decay
a → b + l (+) + ν

The state of the final particles

|f 〉 =
∑

i

|νi 〉 |l+〉|b〉 〈νi l
+b|S |a〉

|νi 〉 is the state of the left-handed neutrino with mass mi and
momentum pi

In matrix element 〈νi l
+b|S |a〉 at neutrino energies E & MeV

mass-squared differences can be neglected
∆m2

12
E2 ∼ 10−17 ∆m2

23
E2 ∼ 10−21



〈νi l
(+)b|S |a〉 ' U∗

li 〈νl l
(+)b|S |a〉SM

〈νl l
(+)b|S |a〉SM is the SM matrix element of the decay

a → b + l (+) + νl

In the matrix element dependence on νi enters through U∗
li

|f 〉 ' |νl〉 |l+〉|b〉 〈νl l
+b|S |a〉SM

|νl〉 =
∑

i

U∗li |νi〉

”Mixed” flavor neutrino νl which is produced together with l+ is
described by the coherent state |νl〉



Evolution equation in Quantum field theory is the Schrodinger
equation for states

d

dt
|Ψ(t)〉 = H |Ψ(t)〉

If |Ψ(0)〉 = |νl〉 at the time t for neutrino state in vacuum we have

|Ψ(t)〉 =
∑

i

|νi 〉 e−iEi tU∗
li , Ei =

√
p2
i + m2

i

Developing over the flavor neutrino states we find

|Ψ(t)〉 =
∑

l ′
|νl ′〉 (

∑

i

Ul ′ie
−iEi tU∗

li )



Neutrinos detection. Let us consider the CC process

νl ′ + N → l ′ + X

Neglecting extremely small ∆m2

E2 terms we have

〈l ′X |S |νiN〉 ' 〈l ′X |S |νl ′N〉SM Ul ′i

From unitarity of U we find

〈l ′X |S |νl ′N〉 =
∑

i

〈l ′X |S |νiN〉U∗
l ′i ' 〈l ′X |S |νl ′N〉SM

The normalized νl → νl ′ transition probability is given by

P(νl → νl ′) = |
∑

i

Ul ′ie
−i(Ei−Ek )tU∗

li |2



Neglecting in matrix elements
∆m2

ik
E2 we come to the following

conclusion

I States of flavor neutrinos νe , νµ and ντ and neutrino
transition probability do not depend on neutrino production
and detection processes

I Matrix elements of neutrino production and detection
processes are given by the Standard Model

Neutrino oscillations are taking place if neutrino state |Ψ(t)〉
is a superposition of states of neutrinos with different masses

and different energies (non stationary neutrino state)
The non stationary nature of neutrino oscillations was

advocated by B.Pontecorvo and his collaborators in early
neutrino oscillation papers



In the accelerator K2K and MINOS experiments time of neutrino
production and neutrino detection was measured. In the K2K
experiment νµ’s were produced in 1.1 µs spills. After the time

t ' L/c ' 0.8 · 103µs νµ were detected by the S-K . It was found
an agreement with the S-K atmospheric neutrino oscillation

results. Thus, in this experiment non stationary picture of
neutrino oscillations was confirmed

Is this a general feature of neutrino oscillations? Are
neutrino oscillations possible also in a stationary case?



Oscillation phase

φki = (Ei − Ek) t ' (pi − pk) t +
∆m2

ki

2E
t

The first term can be comparable with the second one.

(pi − pk) ' a
∆m2

ki

2E
|a| . 1

Experimental data are described if oscillation phase is given by

φki '
∆m2

ki

2E
L

Thus, in the approach based on the Schrodinger equation, we need
to assume that

pi = pk = p

This was original assumption of B. Pontecorvo and his collaborators



Wave function approach to neutrino propagation
We assume that in a weak process νi with momenta pα

i are
produced coherently. Wave function of neutrino is the

superposition of plane waves. According to Dirac equation

Ei =
√

p2
i + m2

i

Neutrino wave function

Ψνl
(x) =

∑

i

e−ipα
i xαU∗

li |i〉

describes propagation in space and time of a superposition of plane
waves (|i〉 describes neutrino with mass mi and helicity equal to -1)

The transition probability is given by

P(νl → νl ′) = |
∑

i

Ul ′ie
−i(pα

i −pα
k )xαU∗

li |2

Transitions are due to the fact that different waves after time t
and distance ~x gain different phases



Oscillation phase

φik = (Ei − Ek)t − (pi − pk)x

General case Ei 6= Ek , pi 6= pk

φik '
∆m2

ik

2E
t − (pi − pk)(x − t)

Independently on the values of the momenta. the second term
is equal to zero (x = t). For the oscillation phase we obtain the

standard expression

φik '
∆m2

ik

2E
t

Stationary case Ei = Ek Oscillation phase

φik = −(pi − pk)x =
∆m2

ik

2E
x

If propagating neutrinos are described by a coherent
superposition of plane waves oscillations are possible also in
the stationary case. Oscillation phase is given by the standard

expression



Time-energy uncertainty relation for neutrino oscillations
Uncertainty relations are based on the Cauchy-Schwarz inequality

∆A ∆B ≥ 1

2
|〈Ψ| [A, B] |Ψ〉|

A and B are two Hermitian operators and |Ψ〉 is any state
The Heisenberg uncertainty relations are a direct consequence of

the commutation relations for A and B
For example

[p, q] =
1

i
→ ∆p ∆q ≥ 1

2

Has universal form ( does not depend on the state |Ψ〉)
The time-energy uncertainty relation has a different character.

Time in quantum theory is a parameter; there is no operator
which corresponds to time

Mandelstam and Tamm method is based on the fact that the
evolution of a quantum system is determined by the

Hamiltonian



For any operator OH(t) in the Heisenberg representation

i
d OH(t)

d t
= [OH(t),H]

From this relation and the Cauchy-Schwarz inequality we have

∆E ∆OH(t) ≥ 1

2
| d
dt

OH(t)|

Nontrivial constraints only for non stationary processes
We choose

O = |νl〉 〈νl |

Assuming that |Ψ(0)〉 = |νl〉 we find

O(t) = Pνl→νl
(t)

where Pνl→νl
(t) is the survival probability



The M-T inequality takes the form

∆E ≥ 1

2

| d
dt Pνl→νl

(t)|√
Pνl→νl

(t)− P2
νl→νl

(t)

If we integrate over the time interval 0 ≤ t ≤ t1min (t1min is the
time at which the survival probability reaches the first minimum)

the time-energy uncertainty relation takes the form

∆E ∆t ≥ 1

2

(π

2
− arcsin(2 Pνl→νl

(t1min)− 1)
)

, ∆t = t1min

For νµ → νµ transitions driven by ∆m2
23 we have

∆t = t1min = 2π
E

∆m2
23

Taking into account that sin2 2θ23 ' 1 we obtain the time-energy
uncertainty relation

∆E ∆t & π

2
It is satisfied in atmospheric S-K and accelerator K2K and MINOS

experiments



For ν̄e → ν̄e transition driven by ∆m2
12 we have

∆E ∆t & 2 sin 2θ13

Because sin2 2θ13 . 2 · 10−1 T-E uncertainty relation gives much
weaker constraint on ∆E in this case

Is time-energy uncertainty relation an universal feature of
neutrino oscillations ?



Mössbauer neutrino experiment
It was proposed by Raghavan an experiment on the detection of

the tritium ν̄e with energy ' 18.6 keV in the recoilless transitions

3H →3 He + ν̄e, ν̄e +3 He →3 H

Oscillation length in such experiment L
(23)
osc ' 18.6 m

It was estimated by Raghavan that ∆E ' 8.4 · 10−12 eV and
σR ' 3 · 10−33cm2

(For much more pessimistic estimates see W. Potzel ArXiv:
0810.2170)

∆E which drives neutrino transition during the time t
(23)
1min must

satisfy the inequality

∆E ≥ 1

2π
sin 2θ13

∆m2
23

E

If sin 2θ13 6= 0 a constraint on ∆E



sin2 2θ13 = 2 · 10−1 (CHOOZ bound)
∆E ≥ 9 · 10−9 eV

sin2 2θ13 = 10−2 (T2K, Daya Bay,...)
∆E ≥ 2 · 10−9 eV

Estimated energy uncertainty for Mössbauer neutrinos
∆E ' 8.4 · 10−12 eV does not saturate time-energy uncertainty

relation
If neutrino oscillations will be observed in Mössbauer neutrino

experiment in this case the time-energy uncertainty relation is not
a characteristic feature of the phenomenon of neutrino oscillations

This is equivalent to the statement that in the case of the
observation of neutrino oscillations in the Mössbauer neutrino

experiment non stationarity is not an universal feature of neutrino
oscillations


