Interpretations of Precision Neutrino Measurements

XIII International Workshop on Neutrino Telescopes Venice, March 10–13, 2009

Future θ_{13} sensitivity

Suggestive Seesaw Features

QFT: natural value of mass operators ← → scale of symmetry

 $m_D \sim$ electro-weak scale

 $M_R \sim L$ violation scale \leftarrow ? \rightarrow embedding (GUTs, ...)

Numerical hints:

For $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim leptons \Rightarrow M_R \sim 10^{11} - 10^{16} \text{GeV}$ $\Rightarrow v$'s are Majorana particles, m_v probes $\sim \text{GUT scale physics!}$ $\Rightarrow \text{smallness of } m_v \Leftarrow \Rightarrow \text{ high scale of } I/2, \text{ symmetries of } m_D, M_R$

2nd Look Questions

Quarks & charged leptons → hierarchical masses → neutrinos?

generation • Less hierarchy in m_D or correlated hierarchy in M_R ? \rightarrow theoretically connected!

- Mixing patterns: not generically large, why almost maximal, θ_{13} small?
- Why 3 right handed neutrinos? what if M_R is singular? ...

 Adding Neutrino Mass Terms

 SM: L=left-handed 2_L, R=1_R → no fermions masses → Higgs

 1) Simplest possibility: add 3 right handed neutrino fields

NEW ingredients, 9 parameters -> SM+

Other effective Operators Beyond the SM

- → higher d operators from integrating out some new physics
 ←→ symmetries: L, flavour, GUTs, ...
- → effects beyond 3 flavours, L-violating operators, ...
- → Non Standard Interactions = NSIs → effective 4f opersators

$$\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(ar{
u}_{Leta} \ \gamma^{
ho} \
u_{Llpha})(ar{f}_L\gamma_{
ho}f_L)$$

• integrating out heavy physics (c.f. $G_F \leftarrow \rightarrow M_W$)

Effects on 0vββ Decay

Majorana ν **→** 0νββ decay

warning:

other lepton number violating processes...

2νββ decay of ⁷⁶Ge observed: $\tau = 1.5 \times 10^{21}$ y

- signal at known Q-value
- 2νββ background (resulution)
- nuclear backgrounds
 - ➔ use different nuclei

Relating Rates / Lifetimes to Neutrino Masses

nuclear matrix elements:

→ virtual excitations of intermediate states

Fäßler et al., ...

Neutrino-less Double β-Decay

aims of new experiments:

- test HM claim
- (∆m₃₁²)^{1/2} ~ 0.05eV ± errors
 → reach 0.01eV
 - → CUORE
 - → GERDA phases I, II, (III)

Comments:

- cosmology: limitation by systematical errors \rightarrow ~another factor 5?
- $0\nu\beta\beta$ nuclear matrix elements ~factor 1-2 theoretical uncertainty in m_{ee}
- $\Delta m^2 > 0$ allows complete cancellation $\rightarrow 0\nu\beta\beta$ signal not guaranteed
- $0\nu\beta\beta$ signal from *some other* new BSM lepton number violating operator
 - very promising interplay of neutrino mass determinations, cosmology, LHC, LVF experiments and theory

... this may not be the full story

Schechter+Valle: Any L violating operator \rightarrow radiative mass generation \rightarrow Majorana nature of v's

However: This might be a tiny correction to a much larger Dirac mass

Lepton Flavour Violation

- Majorana neutrino mass terms
- **R-parity violating supersymmetry**
- •••
- →LFV and leptonic CP violation can even exist for m_v→0
- → e.g. modifications of correlations
 between μ⁻ → e⁻γ decay and
 nuclear μ⁻ → e⁻ conversion
 MEG: 10⁻¹³
 PRISM: 10⁻¹⁸
- → interplay ← → disentangeling: v's - LFV - LHCe-capture decays, excited states, multiple $0v\beta\beta$ isotopes, angular distributions, ..., → exciting options!

Effects on Precision Oscillation Physics

Precise measurements **→** 3f oscillation formulae

<u>Aims</u>: → improved precision of the leading 2x2 oscillations
 → detection of generic 3-neutrino effects: θ₁₃, CP violation

<u>Complication</u>: Matter effects \rightarrow effective parameters in matter \rightarrow expansion in small quantities θ_{13} and $a = \Delta m_{sol}^2 / \Delta m_{atm}^2$

Oscillations in QFT

- is ordinary QM sufficient to describe v-oscillations?
- √'s are relativistic, 2nd quantized, ...
 → Feynman diagram of neutrino oscillation:
 - energy momentum properties, quantum numbers
 - → QM limit, coherence, kinematics, ...
 - e.g. observation of solar neutrinos in v_e channel

Kinematics: Equal Energy or equal Momenta?

- Consider e.g. pion decay at rest: $\pi^+
 ightarrow \mu^+ +
 u_\mu$
- Neutrino energy and momentum determined by energy-momentum conservation

$$p_k^2 = \frac{m_\pi^2}{4} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)^2 - \frac{m_k^2}{2} \left(1 + \frac{m_\mu^2}{m_\pi^2} \right) + \frac{m_k^4}{4 m_\pi^2}$$
$$E_k^2 = \frac{m_\pi^2}{4} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)^2 + \frac{m_k^2}{2} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right) + \frac{m_k^4}{4 m_\pi^2}$$

• For
$$E \gg m$$
: $p_k \simeq E - \xi \frac{m_k^2}{2E}$, $E_k \simeq E + (1 - \xi) \frac{m_k^2}{2E}$
with $E = \frac{m_\pi}{2} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right) \simeq 30 \,\text{MeV}$, $\xi = \frac{1}{2} \left(1 + \frac{m_\mu^2}{m_\pi^2} \right) \simeq 0.8$

⇒ neither equal energy nor equal momentum!

$$e^{ipx} \Rightarrow \left[p_{\mu} \cdot x^{\mu} = p_k L - E_k T = -\frac{m_k^2 L}{2E} \right]$$
 for $L = T$

 $\Rightarrow \xi$ drops out of the oscillation formulae \Leftrightarrow naive treatment correct

Localized Source and Detector:

- Feynman rules for particles of given momentum (\simeq on-shell)
 - \Rightarrow this corresponds to an infinitely extended (non-localized) plane wave
- Localized source (wave packet) and detector in space-time ($\Delta x_S, \Delta t_S$), ($\Delta x_D, \Delta t_D$):
 - \Rightarrow Source: Fourier superposition of momenta with $\sigma_S^2 \simeq min(\Delta x_S^2, \Delta t_S^2)$
 - \Rightarrow Detector: projection on a superposition of momenta with $\sigma_D^2 \simeq min(\Delta x_D^2, \Delta t_D^2)$
- Different masses and momenta \Rightarrow dispersion \Rightarrow loss of coherence

- Oscillations from QFT $\Rightarrow P_{\nu_{\alpha} \to \nu_{\beta}}(L,T) = \left|\sum_{k} U_{\alpha k}^{*} e^{i p_{k} L i E_{k} T} U_{\beta k}\right|^{2}$
- Very interesting QM effects (σ , decay)

Future Precision with Reactor Experiments $\overline{\nu}_{e}$ **near detector** (170m) $\xrightarrow{\overline{\nu}_e}$ far detector (1700m) identical detectors **→** many errors cancel IT & BRET $P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E_{\nu}} - \left(\frac{\Delta m_{21}^2 L}{4E_{\nu}}\right)^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}$ Survival Probablity → Double Chooz 0.8 atmospheric ➔ Daya Bay **3 flavour effect** → Reno 0.6 no degeneracies 0.4 no correlations clean & precise 0.2 no matter effects θ_{13} measurments solar 0 10⁻¹ 10 1 L/E (km/MeV) $E=4MeV \rightarrow 2km$ 4km 40km 80km

NSIs & Neutrino Oscillations

Future precision oscillation experiments:

Source \otimes	Oscillation	\otimes	Detector	
- neutrino energy E - flux and spectrum - flavour composition - contamination - symmetric $\nu/\overline{\nu}$ operation	 oscillation chann realistic baselines MSW matter pro degeneracies correlations 	els s ofile	 effective mass threshold, responsible particle ID (responsible event reconstance backgrounds x-sections (approximate) 	ss, material solution flavour, char truction,) t low E)

precision experiments migh see new effects beyond oscillations!
modifications of 3f oscillation formulae, different L/E
small event rates: offset in oscillation parameters
Non Standard Interactions = NSI's

NSIs interfere with Oscillations

<u>note</u>: interference in oscillations ~ $\epsilon \mid \ FCNC$ effects ~ ϵ^2

NEUTEL @ Venice, Mar. 11, 2009

NSI: Offset and Mismatch in θ_{13}

Unexpected Effects: The GSI Anomaly

\rightarrow Periodically modualted exponential β -decay law

of highly charged, stored ions at GSI by the FRS/ESR Collaboration

Fit to 'Oscillations'

1) exponential

 $dN_{EC} (t)/dt = N_0 \exp \{-\lambda t\} \lambda_{EC}$ $\lambda = \lambda_{\beta} + \lambda_{EC} + \lambda_{loss}$

2) exponential plus periodic oscillation $\frac{dN_{EC}(t)}{dt} = N_0 \exp\{-\lambda t\} \lambda_{EC}(t)$ $\lambda_{EC}(t) = \lambda_{EC} [1 + a \cos(\omega t + \phi)]$

Fit parameters of ¹⁴⁰ Pr data						
Eq.	$N_0 \lambda_{EC}$	λ	a	ω	χ^2/DoF	T = 7.06(9)
1	34.9(18)	0.00138(10)	-	-	107.2/73	0 = -0.3(3)
2	35.4(18)	0.00147(10)	0.18(3)	0.89(1)	67.18/70	¢ 0.0 (0)
	1					
Eq.	$N_0 \lambda_{EC}$	λ	a	ω	χ^2/DoF	-
1	46.8(40)	0.0240(42)	-	-	63.77/38	T = 7.10 (22) s
2	46.0(39)	0.0224(41)	0.23(4)	0.89(3)	31.82/35	$\psi = -1.3 (4)$

Checks / Questions / Problems

Carefully checks:

- artefacts such as periodic coupling of the Schottky-noise to all sort of backgrounds excluded
- all EC decays are recorded; continuous information on the status of mother- and daughter ion during the whole observation time

Questions / problems?

- 3.5 σ \rightarrow could be a statistical fluctuation ... but what if ... 9.5 σ ???
- a number of experimental issues...
- if this were due to neutrino mixing \rightarrow

$$\Delta m^2 \sim 2.2 \cdot 10^{-4} \text{ eV}^2 \left| |m^{(2)} - m^{(1)}| \sim 8.4 \cdot 10^{-16} \text{ eV} \right|$$

disagrees with KamLAND

The EC Process

Kinematics:

- a) precise measurement of mother and daughter energies and momenta
 - \rightarrow emitted mass eigenstate known \rightarrow one contribution
 - → no oscillation, but rate ~ $|U_{ei}|^2$ → not realized here (& no oscillation)
- b) finite kinematical resolution much less than neutrino masses

 \rightarrow all three mass eigenstates contribute <u>incoherently</u>

$$\rightarrow \propto \sum |U_{ei}|^2 = 1$$
 \rightarrow independent of flavour mixing

➔ no periodic modulation of decays due to neutrino mixing

The larger Picture: GUTs

GUT Expectations and Requirements

Quarks and leptons sit in the same multiplets

- → one set of Yukawa couplings for given GUT multiplet
- \rightarrow ~ tension: small quark mixings $\leftarrow \rightarrow$ large leptonic mixings
- → this was in fact the reason for the `prediction' of small mixing angles (SMA) – ruled out by data

Mechanisms to post-dict large mixings:

- → sequential dominance
- → type II see-saw
- ➔ Dirac screening
- → ...

Learning about Flavour

Next: Smallness of θ_{13} , θ_{23} **maximal**

- models for masses & mixings
- input: known masses & mixings
 - \rightarrow distribution of θ_{13} predictions
 - $\rightarrow \theta_{13}$ expected close to ex. bound
 - → well motivated experiments

what if θ_{13} is very tiny? or if θ_{23} is very close to maximal?

- numerical coincidence unlikely
 special reasons (symmetry, ...)
- → answered by coming precision

Flavour Unification

- so far no understanding of flavour, 3 generations
- apparant regularities in quark and lepton parameters
- → flavour symmetries (finite number for limited rank)
- → symmetries not texture zeros

Examples:

GUT \otimes **Flavour Unification**

→ GUT group ⊗ flavour group

<u>example:</u> SO(10) \otimes SU(3)_F

- SSB of SU(3)_F between Λ_{GUT} and Λ_{Planck}
- all flavour Goldstone Bosons eaten
- discrete sub-groups survive ←→SSB
 - e.g. Z2, S3, D5, A4
 - ➔ structures in flavour space
 - ➔ compare with data

GUT \otimes flavour is rather restricted

←→ small quark mixings *AND* large leptonic mixings ; quantum numbers

→ so far only a few viable models rather limited number of possibilities; phenomenological success non-trivial

→ aim: distinguish models further by future precision

Concluding Remarks

- Neutrino physics will enter a precision phase
- Various possibilities and potential for surprises
- Unification path
 - GUTs ... many options
 - flavour symmetries ... many options
 - GUT \otimes flavour unification ... rather restricted
 - → will this allow a glimpse on the origin of flavour?
- Bottom-up approach
 - d>4 operators → modifications of the standard picture
 → 0nbb decay ← → L-violation
 - → oscillations and other flavour transitions
- Use QFT to get correct QM limits ← → experiments test correctness of QFT

Production and Selection of exotic Nuclei

Schottky-Noise Detection

Observation of Decays of stored Ions

- a) normal β -decay \rightarrow different charge \rightarrow different M/q
- b) bound state β -decay by electon capture
 - → same q, slightly different M' (binding energy, n-emission)

Examples for Decay of Single Ions

for few ions: intensity allows to see individual decays

Spectroscopy of individual Particles

- sensitive to single ions
- well-defined
- creation time to
- charge states
- two-body β -decay

 \rightarrow monochromatic v_e

 observation of changes in peak intensities of mother and daughter ions

investigation of a selected decay branch, e.g. pure EC decay
time-dependence of the detection efficiency is excluded