CP violation in neutrino oscillations and new physics

Davide Meloni
Dipartimento di Fisica di RomaTre
&
INFN sezione di RomaTre

Neutrino Telescopes09, March 10–13, Venice

Based on
G. Altarelli & D.M.,
Neutrino oscillation searches: present and future

- The present
 - Solar sector
 \[\Delta m_{21}^2 = 7.67^{+0.67}_{-0.61} \times 10^{-5} \text{eV}^2 \]
 \[\theta_{12} = 34.5^{+4.8}_{-4.0} \]
 - Atmospheric sector
 \[\Delta m_{31}^2 = 2.46^{+0.47}_{-0.42} \times 10^{-3} \text{eV}^2 \]
 \[\theta_{23} = 42.3^{+11.3}_{-7.7} \]

- The future

And also
- mass hierarchy
- octant of the atmospheric angle
In this talk, we will look at the future of neutrino oscillation searches

- **Our starting point:**
 1. A positive signal of CP violation has been established in neutrino oscillation experiments.
 2. θ_{13} has been measured.

- **Our question:**
 Are the observed phenomena compatible with the simple picture where all CP quantities in ν oscillation sector are described in terms of one parameter only?

\[
\begin{align*}
\delta_{CP} \quad \text{or \ equivalently} \\
J \sim \cos \theta_{13} \sin 2 \theta_{13} \sin 2 \theta_{23} \sin 2 \theta_{12} \sin \delta
\end{align*}
\]
Strategy to face the problem

- Our observables are CP asymmetries from one of them we can measure δ

we get predictions for the other asymmetries!

- We measure them and:

 - If the results are compatible with expectations: the Standard Model picture is right
 - If the results are not compatible with expectations: New Physics is at work!
Strategy to face the problem

To perform the test we need

✔ A predictive model for new physics in ν oscillation to compute asymmetries

✔ Experimental facilities where to make the test

Many possible choices in both cases

We decide to use:

• **Minimal Unitarity Violating model (MUV)**
 sufficiently structured to provide indicative estimates of new physics effects

• **The same experimental facilities proposed to measure δ** and solve the problem of degeneracies
Summary of the MUV model

✔ Main assumption:

the complete theory of ν oscillation is unitary but the
effective low energy mixing matrix in NOT

Low energy mixing matrix

$N = (1 + \eta) U_{PMNS}$

Hermitian matrix:
9 new parameters

Unitary matrix:
4 independent parameters
Summary of the MUV model

- The structure of the matrix elements of N can be obtained from *oscillation experiments* (especially disappearance) and *weak decays*

\[
N = (1 + \eta) U_{PMNS}
\]

\[
|\eta| = \begin{pmatrix}
|\eta_{ee}| & < 1.5 \cdot 10^{-3} & |\eta_{e\mu}| & < 3.6 \cdot 10^{-5} & |\eta_{e\tau}| & < 8.0 \cdot 10^{-3} \\
|\eta_{\mu e}| & < 3.6 \cdot 10^{-5} & |\eta_{\mu\mu}| & < 2.5 \cdot 10^{-3} & |\eta_{\mu\tau}| & < 4.9 \cdot 10^{-3} \\
|\eta_{\tau e}| & < 8.0 \cdot 10^{-3} & |\eta_{\tau\mu}| & < 4.9 \cdot 10^{-3} & |\eta_{\tau\tau}| & < 2.5 \cdot 10^{-3}
\end{pmatrix}
\]

Main features: all new moduli at $O(10^{-2}-10^{-3})$ but $\eta_{e\mu}$ which is of $O(10^{-5})$
Experimental facilities

To perform the check, the “experiments” should be so that they are:

- **Able to measure θ_{13} and the standard CP phase**
- **Able to measure e, μ and τ neutrinos**

<table>
<thead>
<tr>
<th>Available channels</th>
<th>Experiments</th>
<th>L (Km)</th>
<th>$<E\nu>$ (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super-Beams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Conventional beam from π decay)</td>
<td>$\nu_\mu \rightarrow \nu_\mu$</td>
<td>T2HK</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>$\nu_\mu \rightarrow \nu_e$</td>
<td>SPL</td>
<td>130-732</td>
</tr>
<tr>
<td>β-Beams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(from radioactive ion decay)</td>
<td>$\nu_e \rightarrow \nu_e$</td>
<td>LEβB (low energy)</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>$\nu_e \rightarrow \nu_\mu$</td>
<td>HEβB (high energy)</td>
<td>732</td>
</tr>
<tr>
<td></td>
<td>+ CP conjugates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrino Factories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(from μ decay)</td>
<td>$\nu_e \rightarrow \nu_{e,\mu,\tau}$</td>
<td>NF@4000 (suitable for small θ_{13})</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>$\bar{\nu}\mu \rightarrow \bar{\nu}{e,\mu,\tau}$</td>
<td>NF@1500 (suitable for large θ_{13})</td>
<td>1500</td>
</tr>
</tbody>
</table>
Asymmetries: Standard vs MUV

✓ preliminaries

We work “close” to the tri-bimaximal mixing

\[U_{PMNS} \sim U_{TBM} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix} \]

The deviation from TBM are parametrized as follows

\[s_{13} = \frac{r}{\sqrt{2}} \quad s_{12} = \frac{1}{\sqrt{3}} (1 + s) \quad s_{23} = \frac{1}{\sqrt{2}} (1 + a) \]

For the sake of simplicity, we work expanding probabilities and asymmetries up to second order in these small quantities:

\[r, s, a \sim O(10\%), \quad \xi = \Delta m^2_{21} / \Delta m^2_{31} \sim 1/30, \quad \eta_{\alpha\beta} \quad \Delta m^2_{21} L/E_\nu \ll 1 \]
We work in the vacuum limit to give more transparent analytical formulae

\[
A_{e\mu}^{SM} = \frac{N_{e\mu}^{SM}}{D_{e\mu}^{SM}} = \frac{12 r \Delta_{21} \sin \delta \sin^2 \Delta_{31}}{4 \Delta_{21}^2 + 9 r^2 \sin^2 \Delta_{31} + 6r \Delta_{21} \cos \delta \sin 2 \Delta_{21}}
\]

\[
A_{e\mu}^{MUV} = \frac{N_{e\mu}^{SM} + 18 r \eta_{e\mu} \sin 2 \Delta_{31} \sin(\delta - \delta_{e\mu})}{D_{e\mu}^{SM} + 18 r \sin^2 \Delta_{31} \left[\eta_{e\tau} \cos(\delta - \delta_{e\tau}) - \eta_{e\mu} \cos(\delta - \delta_{e\mu}) \right]}.
\]

The new CP-violating terms in the numerator contain \(\eta_{e\mu}\) and \(\eta_{e\tau}\) and the corresponding CP phases.
They show a different L/E \(v\) dependence.
The denominator also contains new (CP-conserving) terms in \(\delta_{e\mu}\) and \(\delta_{e\tau}\) (only important for very small \(\theta_{13}\)).
Asymmetries: Standard vs MUV

however

\(\eta_{e\mu} \) is strongly constrained

\[\sin(\theta_{13}) = 0.1 \]

To prove this numerically, we evaluated the asymmetry in both SM and MUV models as a function of \(\delta \)

Results obtained using EXACT probabilities

\(A_{e\mu}^{\text{MUV}} \) does not deviate much from the Standard Model result!
Asymmetries: Standard vs MUV

However, \(\eta_{e\mu} \) is strongly constrained

\[A_{e\mu}^{\text{MUV}} \text{ does not deviate much from the Standard Model result!} \]

MUV predictions are computed as follows:

- η's and phases are extracted randomly flat in their allowed ranges
- For each set of values of η's and phases, we get a MUV prediction, which is a point in the \((\delta, A_{e\mu})\)-plane

\[\sin(\theta_{13}) = 0.1 \]

Results obtained using EXACT probabilities
Asymmetries: Standard vs MUV

- The other two asymmetries are more interesting because they can differ quite a lot from the SM results !!!

\[
A^{SM}_{e\tau} = \frac{N^{SM}_{e\tau}}{D^{SM}_{e\tau}} = \frac{12 r \Delta_{21} \sin \delta \sin^2 \Delta_{31}}{-4 \Delta_{21}^2 - 9 r^2 \sin^2 \Delta_{31} + 6r \Delta_{21} \cos \delta \sin 2 \Delta_{21}}
\]

\[
A^{MUV}_{e\tau} = \frac{N^{SM}_{e\tau} - 6 \eta_{e\tau} [3 r \sin 2 \Delta_{31} \sin (\delta - \delta_{e\tau}) + \Delta_{21} \sin \delta_{e\tau} (3 + \cos 2 \Delta_{31})]}{D^{SM}_{e\mu} + 6 \eta_{e\tau} [3 r \sin^2 \Delta_{31} \cos (\delta - \delta_{e\tau}) + \Delta_{21} \sin 2 \Delta_{31}]} \]

- The new CP-violating terms are only linearly suppressed in the small \(\eta_{e\tau} \) parameter

- Whenever \(\Delta_{21} \sim \eta_{e\tau} \), the \(A^{MUV}_{e\tau} \) can be quite different with respect to the SM result ---> better at smaller baselines
The other two asymmetries are more interesting because they can differ quite a lot from the SM results!!!

\[\sin(\theta_{13}) = 0.1 \]

- Higher density points around the SM results (solid red lines)
- Larger deviations from SM results for smaller baselines, as expected
Asymmetries: Standard vs MUV

- the $\mu\tau$ asymmetry behaves even better...

$$A_{\mu\tau}^{SM} = \frac{4}{3} r \Delta_{21} \sin \delta$$

$$A_{\mu\tau}^{MUV} = A_{\mu\tau}^{SM} - 4 \eta_{\mu\tau} \cot \Delta_{31} \sin \delta$$

Very small because doubly suppressed by r and $\Delta_{21} \sim O(10^{-3})$

Can reach values as large as $\sim O(10^{-1})$!
Consistency check of the Standard Model

✔ the easiest situation: one or more asymmetries are not compatible with the standard bound

A more difficult situation: any measured asymmetry is compatible with the bounds. Then the question is:

are they compatible to each other?

To answer both questions simultaneously we eliminate δ and study $A_{e\tau}$ and $A_{\mu\tau}$ as a function of $A_{e\mu}$
Consistency check of the Standard Model

- In the Standard Model the resulting plots are in the form of closed lines.
- The MUV effects is to fill a larger parameter space.

Due to the large spread induced by MUV, even with a moderate precision a meaningful test of the PMSN mechanism can be achieved.
But what is the expected precision on $A_{\alpha \beta}$?

- Let us make some estimate based on simulations of ν-factory
- We work with *integrated* asymmetries

$$A_{\alpha \beta} = \frac{N_\beta - \bar{N}_\beta}{N_\beta + \bar{N}_\beta}$$

where

$$N_\beta = \int dE_\nu P_{\alpha \beta} \sigma_\beta \frac{d \phi_\alpha}{dE_\nu} \epsilon_\beta \quad \bar{N}_\beta = \int dE_\nu P_{\bar{\alpha} \bar{\beta}} \sigma_{\bar{\beta}} \frac{d \phi_{\bar{\alpha}}}{dE_\nu} \epsilon_{\bar{\beta}}$$

- $\sigma_\beta = \text{cross section for producing the lepton } \beta$
- $\epsilon_\beta = \text{detector efficiency to reveal the lepton } \beta$
- $\phi_\alpha = \text{initial neutrino flux}$

β can be μ or τ

We need different detector technologies
But what is the expected precision on $A_{\alpha \beta}$?

About detector technologies

For $\nu_e \rightarrow \nu_\mu$ transition

- We use a magnetized iron detector (MIND)
- Efficiencies and backgrounds
 as described in A.Cervera at “Golden07”
See also:
ISS Physics Working Group, arXiv:0710.4947

For ν_τ in the final state

- We use an OPERA-like detector, as described in
 A.Donini, D.M., P.Migliozzi,
 Nucl.Phys.B646:321-349,2002 and

Detailed studied is still missing; we assume $X \sim 5$ the statistics and backgrounds of the silver channel.
But what is the expected precision on $A_{\alpha\beta}$?

Other parameters of the simulation:

- L=1500 Km for both detectors
- Detector mass = 50 Kton for golden and 10 Kton for silver
- Overall systematic errors: 2% and 10% for golden and silver, resp.

Estimated uncertainties

The asymmetry uncertainty is not as big as to spoil the possibility to see substantial deviation from Standard Model expectations.
But what is the expected precision on $A_{\alpha\beta}$?

$\sin(\theta_{13}) = 0.1$

The same conclusions as the previous case

Output of the analysis

The conclusions obtained looking at the asymmetries at the probability level are not invalidated when reliable error estimated are taken into account.
The impact of the degeneracies

It could happen that one measures “incompatible” values of asymmetries.

new physics is at work

The result is perfectly compatible with the Standard Model but, due to our ignorance about θ_{23} and the sign $[\Delta m^2_{31}]$, we “missed” the correct interpretation of the data.

We have to discuss the role of the degeneracies in performing the test !!!
The sign and octant degeneracies

- Suppose \((\theta_{13}, \delta)\)-bar are the values chosen by Mother Nature
- Other \((\theta_{13}, \delta)\) pairs can give the same transition probabilities for neutrinos and antineutrinos at the same time

Sign degeneracy

The fake \((\theta_{13}, \delta)\) solutions are obtained solving

\[
P_{\nu_{\alpha} \nu_{\beta}} (\theta_{13}, \delta, -|\Delta m_{23}^2|) = P_{\nu_{\alpha} \nu_{\beta}} (\bar{\theta}_{13}, \bar{\delta}, |\Delta m_{23}^2|)
\]

Octant degeneracy

It comes from the fact that the atmospheric angle is measured via the disappearance channel which depends on \(\sin^2(2\theta_{23})\)

\[
P_{\nu_{\alpha} \nu_{\beta}} (\theta_{13}, \delta, \frac{\pi}{2} - \theta_{23}) = P_{\nu_{\alpha} \nu_{\beta}} (\bar{\theta}_{13}, \bar{\delta}, \bar{\theta}_{23})
\]

These equations have in general two solutions in the \((\theta_{13}, \delta)\)-plane

The sign and octant degeneracies

In the asymmetry planes, they appear as follows

\[L = 4000 \text{ Km} \quad E = 30 \text{ GeV} \quad \theta_{23} = 42^\circ/48^\circ \quad \sin(\theta_{13}) = [0.02, 0.05, 0.1, 0.15] \]

The octant degeneracy does not seem to be a problem because almost superimposed to the standard correlation.

The sign degeneracy could be dangerous if MUV predictions fall close to the “sign degeneracy” values.
The sign and octant degeneracies

At large baseline (like $L=4000$ Km) the new physics is not large enough to fill the gap

Even at smaller baselines, where the matter effects do not help a lot in measuring the sign of the Δm^2_{31}, a meaningful test of standard picture is still possible (unless MUV prediction fall on the red “eight”...)

$L=295$ Km $\ E_v=0.75$ GeV

$\Delta m^2_{31}<0$
Conclusions

- We have studied the possibility of testing whether the observed CP violation is consistent with the SM prediction that all CP violation observables must be proportional to the leptonic Jarlskog invariant.

- As a quantitative model, we adopted the MUV framework with present bounds on its parameters.

- We found that, although the model is a rather restricted model of new physics, the deviations from the standard picture of CP violation could be detected with realistic experimental accuracies.

- To this aim, it is necessary to measure not only the golden channel $A_{e\mu}$ but at least one more channel ($A_{e\tau}$ and/or $A_{\mu\tau}$).

- The useful values of $L/<E_\nu>$ should be small to enhance the new physics effects but also not too small to allow for a good counting rates.

- A good compromise seems to be a ν-factory at $L=1500$ Km and $E_\mu=50$ GeV.
Backup slides
Summary of the MUV model

- The structure of the matrix elements of N can be obtained from oscillation experiments (especially disappearance) and weak decays.

In fact, a part from normalization coefficients, the dis probability is

$$P_{\nu_\alpha \nu_\alpha} \sim \sum_i \left| N_{\alpha i} \right|^4 + 2 \left| N_{\alpha 1} \right|^2 \left| N_{\alpha 2} \right|^2 \cos \Delta_{12} + (2 \leftrightarrow 3) + (1 \leftrightarrow 2)$$

- $\Delta_{12} \simeq 0$
- $\Delta_{12} \neq 0$, $\Delta_{13} \gg 1$
- $\Delta_{12} \simeq 0$, $\Delta_{13} \simeq 0$

CHOOZ, SK, K2K, MINOS
KamLAND
KARMEN, NOMAD, disappearance
(minor detector) MINOS, BUDEY
Summary of the MUV model

- Fits to oscillation data give the following N matrix

$$
|N| = \begin{pmatrix}
0.75 -0.89 & 0.45 -0.66 & 0.00 -0.27 \\
0.00 -0.69 & 0.22 -0.81 & 0.57 -0.85 \\
? & ? & ?
\end{pmatrix}
$$

- Constraints from electroweak decays help!

- **W decays**
 \[\Gamma(W \rightarrow l_{\alpha} \nu_{\alpha}) = \frac{G_F M_W^3}{6 \sqrt{2 \pi}} \left| N N_{dag} \right|_{\alpha \alpha}\]

- **Invisible Z decays**
 \[\Gamma(Z \rightarrow invisible) = \frac{G_F M_W^3}{12 \sqrt{2 \pi}} \sum_{ij} \left| (N_{dag} N)_{ij}\right|^2\]

- **Rare charged lepton decays**
 \[l_{\alpha} \rightarrow l_{\beta} \gamma\]
Summary of the MUV model

\[B(\tau \rightarrow e \gamma) < 1.1 \times 10^{-7} \]
\[B(\tau \rightarrow \mu \gamma) < 4.5 \times 10^{-8} \]
\[B(\mu \rightarrow e \gamma) < 1.2 \times 10^{-11} \]

From these bounds, one can also get information on the last row of \(N \) and on the moduli on the \(\eta \) matrix elements (90% CL)

\[
|\eta| = \begin{pmatrix}
|\eta_{ee}| < 1.5 \cdot 10^{-3} & |\eta_{e\mu}| < 3.6 \cdot 10^{-5} & |\eta_{e\tau}| < 8.0 \cdot 10^{-3} \\
|\eta_{\mu e}| < 3.6 \cdot 10^{-5} & |\eta_{\mu \mu}| < 2.5 \cdot 10^{-3} & |\eta_{\mu \tau}| < 4.9 \cdot 10^{-3} \\
|\eta_{\tau e}| < 8.0 \cdot 10^{-3} & |\eta_{\tau \mu}| < 4.9 \cdot 10^{-3} & |\eta_{\tau \tau}| < 2.5 \cdot 10^{-3}
\end{pmatrix}
\]
Background sources and rejection factors

- **silver channel**
 - neutrino induces charm production
 - anti-neutrino induces charm production
 - $\tau^+ \rightarrow \mu^+$ decays
 - μ matched to hadron track
 - decay-in-flight and punch-through hadrons

- large-angle muon scattering

- **golden channel**
 - neutral currents
 - wrong charge assignment

$10^{-8} \times (N_{CC}(\nu_e) + N_{CC}(\nu_\mu))$
$3.7 \times 10^{-7} \times N_{CC}(\bar{\nu}_\mu)$
$10^{-3} \times N_{CC}(\bar{\nu}_\tau)$
$7 \times 10^{-9} \times N_{CC}(\bar{\nu}_\mu)$
$6.97 \times 10^{-7} \times N_{NC} +$
$2.1 \times 10^{-8} \times N_{CC}(\nu_e)$
$10^{-8} \times N_{CC}(\nu_\mu)$

$5 \times 10^{-6} \times N_{NC}(\bar{\nu}_\mu)$
$5 \times 10^{-6} \times N_{CC}(\bar{\nu}_\mu)$
Non-unitarity vs non-standard interactions

- Flavour eigenstates in the case of MUV model
 \[|\nu_\alpha\rangle = \frac{(1 + \eta)^{\alpha\beta}}{\sqrt{[1 + 2\eta_{\alpha\alpha} + (\eta^2)_{\alpha\alpha}]}} |\nu_{SM}^\beta\rangle \]
 \[\nu_{SM}^\alpha = U_{\alpha i} \nu_i \]

- Example: operators inducing new physics effects in the production and detection processes of neutrinos at ν-factories

New physics terms

\[-L_{int} = \frac{4 G_F}{\sqrt{2}} \sum_\alpha \left[(\delta_{\alpha\mu} + \frac{G^{D}_{\mu\alpha}}{G_F}) (\bar{\nu}_\alpha \gamma_\mu P_L \mu) (\bar{d} \gamma^\mu P_L u) + (\delta_{\alpha e} + \frac{G^{e\alpha}_{\mu}}{G_F}) (\bar{\nu}_\alpha \gamma_\mu P_L e) (\bar{\mu} \gamma^\mu P_L \nu_\mu) \right] \]
Non-unitarity vs non-standard interactions

- The effective production and detection states are given by

\[
\left| \nu_e^P \right> = (1 + \varepsilon^P)_{e\beta} \left| \nu_\beta^{SM} \right>
\]

\[
\left| \nu_\mu^D \right> = (1 + \varepsilon^D)_{\mu\beta} \left| \nu_\beta^{SM} \right>
\]

where

\[
\varepsilon_{P,D} = \frac{G^D_{\mu\alpha}}{G_F}
\]

and these expressions are very similar to the parameterization of the effects of a non-unitary mixing matrix.
About θ_{13}

- We have assumed that θ_{13} will be known with sufficient precision by the time that a meaningful measurement of CP violation can be performed.
- An obvious question is whether θ_{13} can be determined in a reasonably independent way.
- In the MUV framework $P_{e\mu}$ is optimal as the new physics effects are bound to be small.
- Alternatively, one can use reactor experiments:

$$P_{ee} = 1 - 2 \sin^2 \Delta_{31} \left[r^2 + \eta_{e\tau} + 2r \eta_{e\tau} \cos (\delta - \delta_{e\tau}) \right] - \frac{8}{9} \Delta_{21}^2$$

The effects of new physics can be quite large and reactor experiments cannot guarantee a model independent determination of θ_{13}.
- Reactor experiment results should be combined with other experiments.