Solar Neutrinos and the Solar Composition

Carlos Peña Garay IFIC, Valencia

March 10th, 2009

Neutrino Telescopes, Venice

Solar Metallicity

"Un altro modo di guardare il cielo"

How do stars start?

Standard: Early Sun Chemically homogeneous (early fully convective Hayashi phase)

BPS08: Improved S_{34} & $S_{1,14}$ + GS98 Z_i/X

Quantity	Best	1σ	Ref.
	Estimate	Uncertainty	
P-P	$3.94{ imes}10^{-25}~{ m MeV}~{ m b}$	0.4%	1
$^{3}\mathrm{He}+^{3}\mathrm{He}$	5.4 MeV b	6.0%	2,3
$^{3}\mathrm{He}+^{4}\mathrm{He}$	$S(0)=0.567\pm0.018\pm$	E0.004 keV b	3,4
$^{7}\text{Be}+e^{-}$	Eq. (26), ref. 3	2%	3,5
$^{7}\mathrm{Be+p}$	20.6 eV b	3.8%	6
hep	$8.6 \times 10^{-20} \text{ keV b}$	15.1%	1
$^{14}N+p$	$S_{tot}(0) = 1.57 \pm 0$).13 keV barn	7,8
age	$4.57 imes10^9~{ m yr}$	0.44%	9
diffusion	1.0	15.0%	10
luminosity	$3.842 \times 10^{33} \ \rm erg \ s^{-1}$	0.4%	9,11,12

LUNA, 0809.5269

LUNA, 0807.4919

SSM BPS08

Source BPS08(GS)	
$\begin{array}{ll} pp & 5.97(1\pm0.006) \\ pep & 1.41(1\pm0.011) \end{array}$	Precise fluxes: θ_{12}
$\begin{array}{ll}hep & 7.90(1 \pm 0.15)\\ {}^{7}\mathrm{Be} & 5.07(1 \pm 0.06)\end{array}$	
⁸ B $5.94((1 \pm 0.11)$	Test matter effects
¹³ N 2.88(1 ± 0.15) ¹⁵ O 2.15(1 $^{+0.17}_{-0.16}$)	
17 F 5.82(1 $^{+0.19}_{-0.17}$)	
Cl $8.46^{+0.87}_{-0.88}$	
Ga $127.9^{+8.1}_{-8.2}$	

PG & Serenelli, arXiv: 0811.2424

Uncertainties: where to improve

Source	S_{11}	S23	S ₃₄	S_{17}	$\mathbf{S_{hep}}$	$S_{1,14}$	$S_{7Be,e}$	L_{\odot}	Age	Diff	Opac	с	N	0	Ne	Mg	Si	s	Ar	Fe
pp	0.090	0.029	-0.059	0.000	0.000	-0.004	0.000	0.808	-0.067	-0.011	-0.099	-0.005	-0.001	-0.005	-0.004	-0.004	-0.009	-0.006	-0.001	-0.016
pep	-0.236	0.043	-0.086	0.000	0.000	-0.007	0.000	1.041	0.017	-0.016	-0.300	-0.009	-0.002	-0.006	-0.003	-0.002	-0.012	-0.014	-0.003	-0.054
hep							0.000													
^{7}Be							1.000													
⁸ B	-2.73	-0.427	0.846	1.000	0.000	0.005	0.000	7.130	1.380	0.280	2.702	0.025	0.007	0.111	0.083	0.106	0.211	0.151	0.027	0.510
¹³ N	-2.09	0.025	-0.053	0.000	0.005	0.711	0.000	4.400	0.855	0.340	1.433	0.861	0.148	0.047	0.035	0.051	0.109	0.083	0.015	0.262
15 O	-2.95	0.018	-0.041	0.000	0.000	1.000	0.000	6.005	1.338	0 394	2.060	0.810	0.207	0.075	0.055	0.076	0.158	0.117	0.021	0.386
¹⁷ F	-3.14	0.015	-0.037	0.000	0.000	0.005	0.000	6.510	1.451	0.417	2.270	0.024	0.005	1.083	0.061	0.084	0.174	0.128	0.023	0.428
R_{CZ}	-0.061	0.002	-0.003	0.000	0.000	0.000	0.000	-0.016	-0.081	-0.018	-0.012	-0.006	-0.005	-0.028	-0.012	-0.005	0.002	0.004	0.001	-0.009
Y_S	0.134	-0.005	0.009	0.000	0.000	0.001	0.000	0.373	-0.110	-0.073	0.646	-0.009	-0.001	0.023	0.033	0.037	0.070	0.048	0.009	0.089

Logarithmic partial derivatives of neutrino fluxes with respect to solar inputs times uncertainties show leading sources of uncertainty

Characterize correlations

Uncertainties: Partial contributions

Source	No composition % (S ₃₃ , S ₃₄ , S ₁₇ , S ₁₁₄ , Op, Diff)	Composition %
⁷ Be	5 (2.5,2.8,0.0,0.0,3.2,2.0)	2
⁸ B	10 (2.6,2.7,3.8,0.0, <mark>6.8,4.2</mark>)	5
¹³ N	8 (0.2,0.2,0.0, <mark>6.0,3.6,5.1</mark>)	13
¹⁵ O	11 (0.2,0.2,0.0,8.3,5.2,5.9)	12

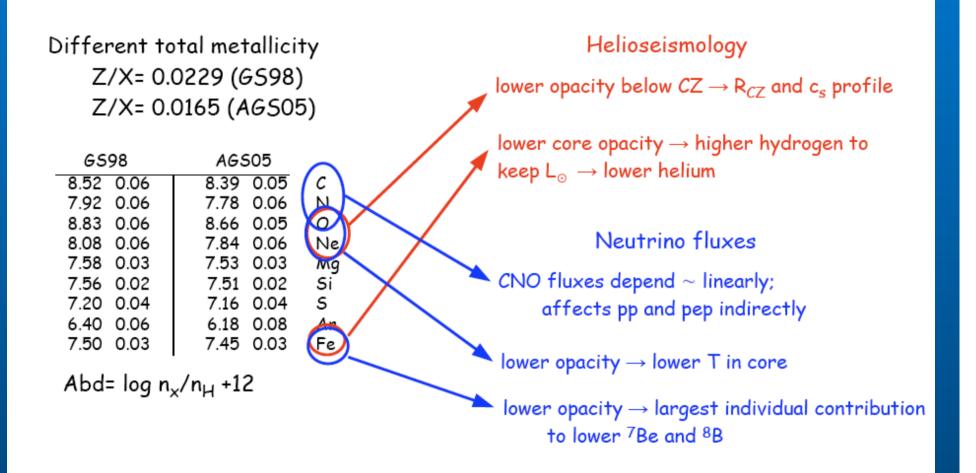
Recommendations:

- Reduce $S_{1,14}$ uncertainty to be below 5%
- Reduce uncertainty in Fe (to 0.02 dex)
- Reduce uncertaintiy in C (to 0.02 dex)

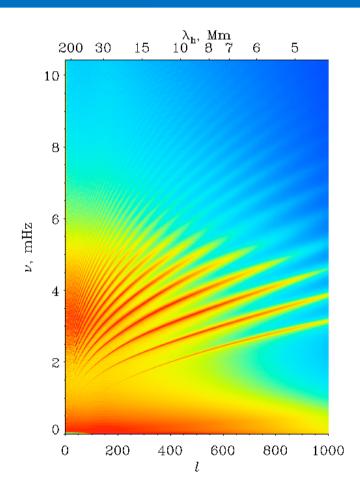
BPS08: Opacities

Effects of Opacity

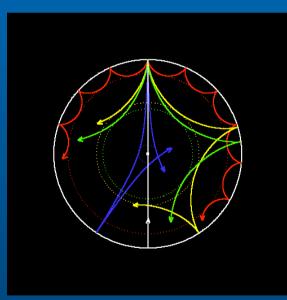
Difference oscillates. If 1- σ defined as difference SSM(OP) - SSM(OPAL),


uncertainties are reduced: 1%, 2.4%, 1.3%, 2.1%, 2.2% (⁷Be, ⁸B, CNO)

First approach a bit more conservative


Solar Neutrinos

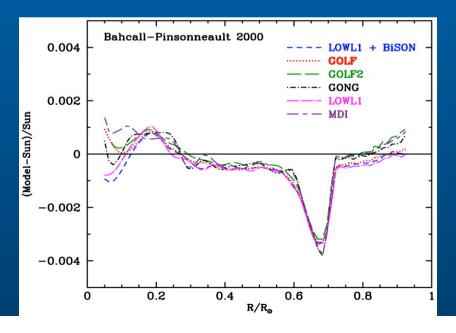
Rain on SSM's parade


Improved abundances: GS vs AGS

The pulsating Sun: Helioseismology

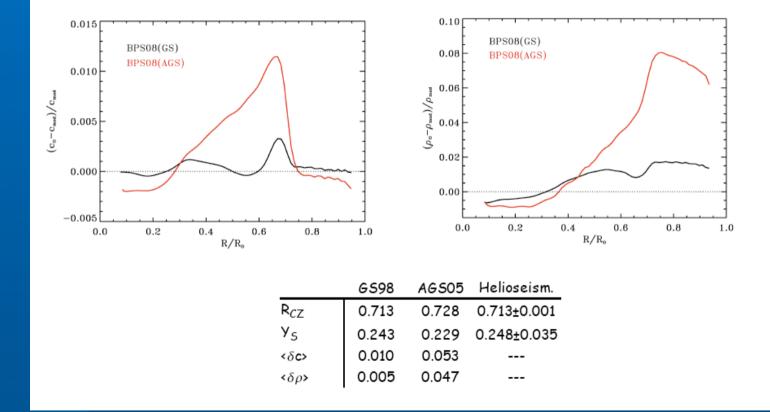
Doppler observation of spectral lines:
velocities ~ cm/s
long observations needed
Accuracy in frequencies ~10⁻⁵

Physics: Acoustic waves, pressure-modes, stochastically excited by convection


Helioseismology

Oscillation frequencies depend on ρ, P, g, c
Inversion problem: use measured frequencies and a reference solar model to determine the solar structure

$$\frac{\delta\omega_i}{\omega_i} = \int K^i_{c^2,\rho}(r) \frac{\delta c^2}{c^2}(r) dr + \int K^i_{\rho,c^2}(r) \frac{\delta\rho}{\rho}(r) dr + F_{surf}(\omega_i)$$

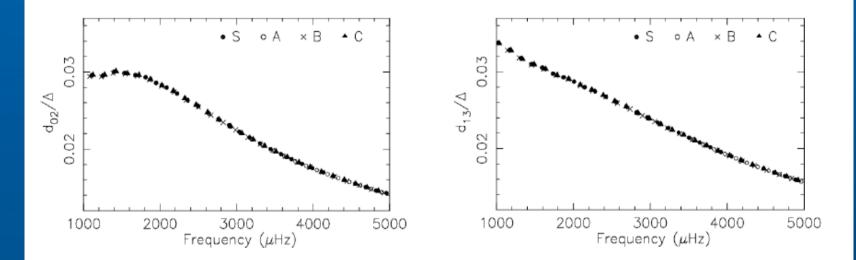

Output of inversion procedure: $\delta c^2(r)$, $\delta \rho(r)$, R_{CZ} , Y_{SURF}

Relative difference of c between Sun and BP00

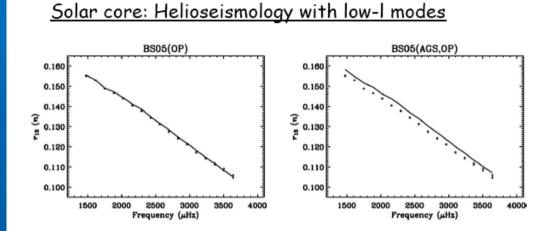
BPS08 Helioseismology: GS vs AGS

Helioseismology: Sound speed and density profiles

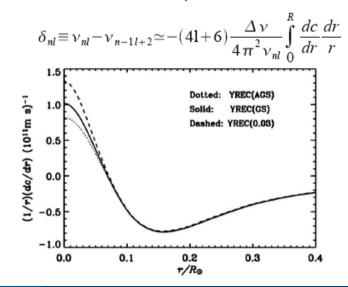
Attemps to solve the discrepancy: Increase opacity below CZ? Increase Ne abundance? Enhance diffusion?


Low abundances: non-local solution needed

Solar core: Helioseismology with low-1 modes


Roxburgh & Vorontsov (2003): ratio of small to large separation ratios depend only on interior structure

Separation ratios: r₀₂ - r₁₃


 $r_{02}(n) = \frac{d_{02}(n)}{\Delta_1(n+1)} = \frac{\nu_{n,0} - \nu_{n-1,2}}{\nu_{n,1} - \nu_{n-1,1}} \qquad r_{13}(n) = \frac{d_{13}(n)}{\Delta_0(n+1)} = \frac{\nu_{n,1} - \nu_{n-1,3}}{\nu_{n,0} - \nu_{n-1,0}}$

Low abundances: non-local solution needed

Effect of metalicity arise in the core

Low l-modes BiSON data Chaplin et al (2007)

- Low-Z models not compatible with low-l frequencies
- \bullet Conservative abundances: too conservative \rightarrow assume smaller uncertainties for SSM

BPS08: GS vs AGS solutions

Source	BP04	Source	BPS08(GS)	BPS08(AGS)	Difference
pep hep 7Be 8B ^{13}N ^{15}O	$5.94(1 \pm 0.01)$ $1.40(1 \pm 0.02)$ $7.88(1 \pm 0.16)$ $4.86(1 \pm 0.12)$ $5.79(1 \pm 0.23)$ $5.71(1 \stackrel{+0.37}{_{-0.35}})$ $5.03(1 \stackrel{+0.43}{_{-0.39}})$ $5.91(1 \stackrel{+0.44}{_{-0.44}})$	pp pep 7Be 8B ^{13}N ^{15}O ^{17}F	$\begin{array}{l} 5.97(1\pm0.006)\\ 1.41(1\pm0.011)\\ 7.90(1\pm0.15)\\ 5.07(1\pm0.06)\\ 5.94((1\pm0.11)\\ 2.88(1\pm0.15)\\ 2.15(1\begin{array}{c}+0.17\\-0.16\end{array})\\ 5.82(1\begin{array}{c}+0.19\\-0.17\end{array})\end{array}$		1.2% 2.8% 4.1% 10% 21% 34% 31% 44%
Cl Ga	$8.5^{+1.8}_{-1.8} \\ 131^{+12}_{-10}$	Cl Ga	$8.46^{+0.87}_{-0.88}$ $127.9^{+8.1}_{-8.2}$	$6.86^{+0.69}_{-0.70}$ $120.5^{+6.9}_{-7.1}$	

PG & Serenelli, arXiv: 0811.2424

PRL92,121301 (2004)

Bahcall & Pinnsoneault

Neutrino fluxes: correlations

Flux	PP	pep	hep	$^{7}\mathrm{Be}$	$^{8}\mathrm{B}$	^{13}N	¹⁵ O	$^{17}\mathrm{F}$
PP	1.000	0.967	-0.012	-0.796	-0.642	-0.127	-0.132	-0.111
pep	0.967	1.000	0.001	-0.793	-0.667	-0.162	-0.171	-0.137
hep	-0.012	0.001	1.000	0.022	0.021	-0.005	-0.008	-0.014
$^{7}\mathrm{Be}$	-0.796	-0.793	0.022	1.000	0.878	0.125	0.155	0.237
^{8}B	-0.642	-0.667	0.021	0.878	1.000	0.257	0.296	0.412
^{13}N	-0.127	-0.162	-0.005	0.125	0.257	1.000	0.984	0.299
^{15}O	-0.132	-0.171	-0.008	0.155	0.296	0.984	1.000	0.338
$^{17}\mathrm{F}$	-0.111	-0.137	-0.014	0.237	0.412	0.299	0.338	1.000

Large correlation of fluxes (⁸B - ⁷Be, ¹³N - ¹⁵O) may help to discriminate predicted fluxes

Global Analysis (+ lum. constraint)

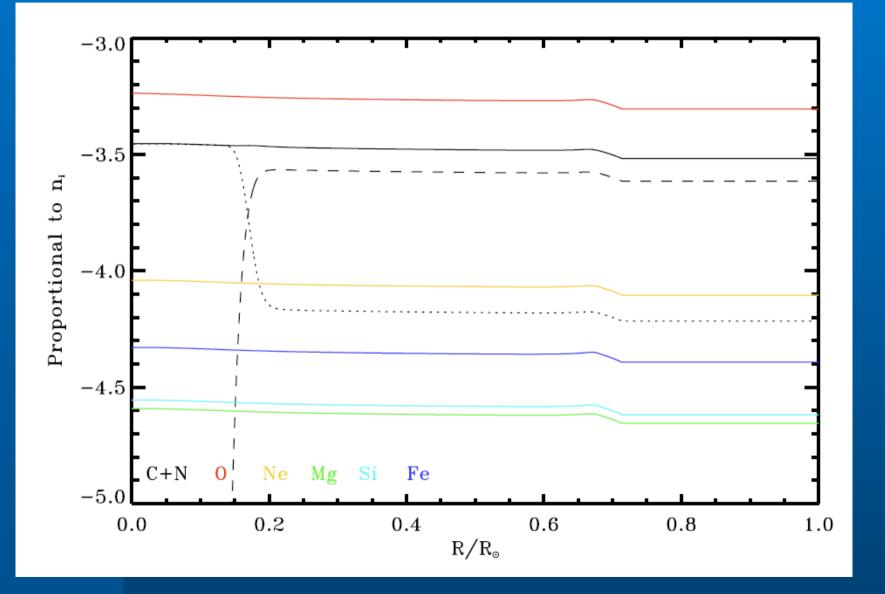
$$\chi^2_{\text{global}} = \chi^2_{\text{solar}}(\Delta m^2, \theta_{12}, \{\xi, f_{\text{B}}, f_{\text{Be}}, f_{p-p}, f_{\text{CNO}}\}) + \chi^2_{\text{KamLAND}}(\Delta m^2, \theta_{12}, \theta_{13}) + \chi^2_{\text{CHOOZ}+\text{ATM}}(\theta_{13}). + \chi^2_{K2K+MINOS}(\theta_{13}) + \chi^2_{K2K+MINOS}(\theta_{13}).$$

$$\Delta m_{21}^2 = (7.7 \pm 0.2) \times 10^{-5} \text{eV}^2$$

$$\tan^2 \theta_{12} = 0.46^{+0.04}_{-0.05} \quad ; \ \sin^2 \theta_{13} = 0.014^{+0.011}_{-0.009}$$

$$f_{\text{B}} = 0.91 \pm 0.03 \quad ; \qquad f_{\text{B}e} = 1.02 \pm 0.10$$

$$f_{\text{P}p} = 1.00^{+0.01}_{-0.02} \quad ; \qquad L_{\text{CNO}} = 0.0^{+2.9}_{-0.0}\%$$


$\mathrm{R}{=}\langle^{3}\mathrm{He}{+}^{4}\mathrm{He}\rangle/\langle^{3}\mathrm{He}{+}^{3}\mathrm{He}\rangle{=}0.19{\pm}0.02$

Physics summary:

- Neutrino oscillations
- CNO luminosity & pp termination chain by data

How do stars start? (I)

Metal difusion

Testing BPS08(GS) & BPS08(AGS) with ν data

$^{7}\mathrm{Be}$	$5.07(1 \pm 0.06)$	$4.55(1 \pm 0.06)$	10%
^{8}B	$5.94((1\pm0.11)$	$4.72(1 \pm 0.11)$	21%

$$\chi^2 = \sum_{ij} (f_i^{th} - f_i) \sigma_{ij}^{-2} (f_j^{th} - f_j)$$

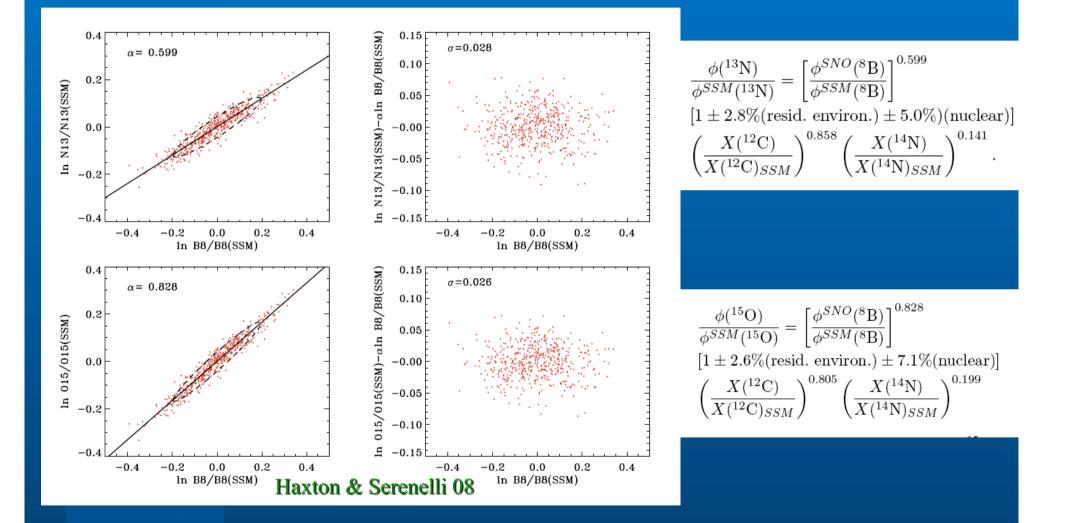
$$\sigma_{ij}^2 = \sigma_{exp,i} \sigma_{exp,j} \rho_{ij}^{exp} + \sigma_{th,i} \sigma_{th,j} \rho_{ij}^{th}$$

$$\chi^2_{\mathrm BPS08(GS)} = 0.9~(63\%)$$
 and $\chi^2_{\mathrm BPS08(AGS)} = 1.5(47\%)$

Now: Both models acceptable. Soon (SNO/SK + Borexino): - increase power of this test, - within reach $\Delta \chi^2$ (AGS-GS) = 6.2 (2.5 σ)

Roadmap: CNO fluxes

13 N	$2.88(1 \pm 0.15)$	$1.89(1 \ _{-0.13}^{+0.14})$	34%
$^{15}\mathrm{O}$	$2.15(1 \ \substack{+0.17 \\ -0.16})$	$1.34(1 \ _{-0.15}^{+0.16})$	31%


Precision required $\sim 15\%$

Direct evidence of how stars (heavier or older than the Sun) bright.

Contribution to further test BPS08(GS) and BPS08(AGS). Strong correlation may improve power of solar composition test

How do stars start? (II)

How to extract core metallicities

Conclusions

Solar neutrinos: Best θ_{12} (10% in tan² θ_{12}) and test MSW Neutrino fluxes determined (pp/pep, ⁷Be, ⁸B) and CNO luminosity constrain

BPS08 neutrino fluxes: more precise, dominant sources identified ($S_{1,14}$, Op, Diff, Z_i/X) and being further studied

Improvements in solar surface composition lead to wrong beating Sun in all regions.

Ongoing and future neutrino experiments will probe the solar composition:

- test BPS08(GS) & BPS08(AGS) solutions
- test core CN abundances