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A striking feature of particle physics has been the symmetry between hadrons and leptons.1  I first learned of this as the Puppi Triangle which stated the equality of the np, e
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 currents coupled each to the others.

With the discovery of strange particles it was natural to add the 
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.  However this didn’t work because of the long strange particle lifetimes.  Thus Cabibbo proposed (translating to quark language) that what coupled to u was (d cos 
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).  Furthermore in 1962 it was discovered that 
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 was different from 
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.  To reinstate the hadron-lepton symmetry, Bjorken and Glashow suggested that there must be a fourth quark c coupled to (s cos 
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Finally charm was discovered in 1974 and the symmetry was restored.  Then in 1975 Marty Perl discovered the third generation lepton 
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.  With the discovery of the third generation quarks we once more have the symmetry:
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The symmetry is manifested via (1) three generations (2) the same weak interactions, and (3) the mass hierarchy of e, u, 
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 analogous to that of the quarks.  It is interesting to note that the leptons have led the way: 
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 before charm, and 
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 before b.

One notational comment:  I wrote (d’, s’, b’) for the flavor eigenstates since (d, s, b) are used for mass eigenstates, whereas (
[image: image15.wmf],

e

n

 
[image: image16.wmf]m

n

, 
[image: image17.wmf]t

n

) are flavor eigenstates.

Of course, this symmetry is badly broken: quarks have strong interactions.  Pati and Salam2 called this symmetry the SU (4) of color with leptons the fourth color.  The symmetry is broken when the lepto-quarks among the generators of SU (4) get a large mass leaving the gluons massless.

In the standard model there is no right-handed neutrino 
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; however, if the quark-lepton symmetry holds at some scale then 
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 must exist.  Furthermore these 
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 should couple to 
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 to give neutrinos a Dirac mass comparable to that of quarks.  To explain the small neutrino masses an aspect of the breaking of the quark-lepton symmetry could be large Majorana masses for the 
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.  Thus the 
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 would effectively decouple from the low energy theory except for small non-zero Majorana masses for the three “left-handed” neutrinos. This see-saw mechanism was first proposed3 in the context of SO(10), a GUT that manifests quark-lepton symmetry.

To explain the small values we now have for neutrino masses the scale of symmetry breaking, that is, the mass scale of 
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, must be greater than 
[image: image25.wmf]12

10

 Gev.  There is little other physics, unless proton decay is discovered, that is directly related to such a large scale.  Therefore it may be difficult ever to know whether this see-saw mechanism is the correct explanation.

Quark-lepton symmetry also suggests flavor mixing so that the mass eignstates are mixtures of 
[image: image26.wmf],

e

n

, 
[image: image27.wmf]m

n

, 
[image: image28.wmf]t

n

.  Indeed it is this flavor mixing that made it possible to detect neutrino mass via oscillations.  

If we consider the simplest scenario fitting present data the heaviest mass state is 
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where we consider the first order in the small mixing 
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.  Then there are two lighter states 
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.  The atmospheric neutrino oscillation determines 
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, which is responsible for solar neutrino disappearance, is probably less than 
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The large 
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 mixing is very different from the small mixing of second and third generation quarks.  This should provide another key to the way in which the quark-lepton symmetry is broken.

Finally quark-lepton symmetry suggests that the mixing matrix should violate CP invariance.  In analogy with the CKM matrix this is accomplished by making 
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The possibility of observing CP violation in long baseline oscillation experiments has been the subject of a large number of papers and proposals.4  It is very important to note that this depends entirely on a significant non-zero value of 
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.  So far we only have the limit from the CHOOZ reactor experiment.  
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0.2.  Thus the measurement of 
[image: image48.wmf]13

s

 should be the major goal of the forthcoming MINOS and NGS experiments.  It is somewhat dangerous to embark on elaborate new experiments to measure CP violation until we know that 
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 is significantly different from zero.

Experiments to measure 
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 or to detect CP violation involve 
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 over long distances and thus are sensitive to the matter effect.5  This effect has not yet been directly detected.  The best chance to see it so far has been the possible day-night asymmetry for solar neutrinos; the present limit on this asymmetry provides significant constraints on the large mixing angle (LMA) solution of the solar neutrino problem.6  The matter effect could significantly enhance the 
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 transitions for atmospheric neutrinos passing through the earth over a limited energy range.7
In forthcoming long baseline experiments it is conceivable that one could compare 
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to search for CP violation.  A difference between these could be due to matter effects and thus not necessarily imply CP violation.  Many papers discuss how to distinguish these, particularly by studying the energy dependence.8  It would be possible to make a direct test of T violation at a neutrino factory by comparing 
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.  In this case one does not have to worry about the matter effect except for possible very small effects due to the asymmetry in the matter between source and detector.

Finally I will discuss neutrinoless double beta decay.  Observation of this decay would be very significant indicating the violation of lepton number and that neutrinos are Majorana particles.  Assuming that the only source of this decay is neutrino mass one deduces the quantity
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The 
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 is that it is the magnitude of the ee element of the mass matrix.  The factors 
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 can in principle be determined from oscillation experiments.  However the 
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represents the relative CP eigenvalue of 
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and are called the Majorana phases. (In some papers the notation 
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 refers to a complex quantity.  In this case one must be careful to distinguish the Majorana phases from the phase 
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.).  It is important to note that these two phases are independent of the phase 
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 that could be measured in oscillations.  Formally one can define three independent phase invariants.9  
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Within the scenario we have discussed, oscillation experiments can determine the three 
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.  However the actual masses depend on the value of 
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In general a measurement of 
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 will determine a range of values of
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. with the maximum and minimum corresponding to CP conservation and intermediate values corresponding to CP violation.10  Thus a measurement of 
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 alone cannot determine the presence of non-zero Majorana phases.  Also even if 
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 are non-zero there are no CP-odd observables associated with double beta decay.

However it is conceivable that the future measurements11 of both double beta decay and neutrino mass 
[image: image89.wmf]o

m

 from 
[image: image90.wmf]H

3

 decay could reveal the presence of a non-zero Majorana phase.  Within the scenario discussed above the case of interest would be that in which the three neutrino eigenstates were approximately degenerate
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For CP conservation the value of 
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where 
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 is the mixing angle for solar neutrinos.  For the LMA solution 
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 would imply CP violation.  This possibility may prove very difficult in practice, however, given prospective errors on 
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In conclusion, the neutrino mixing matrix opens a new window on flavor physics and CP violation.  However it may be more difficult to explore than the case of quark mixing and it remains to be seen whether we can obtain fundamental insights as to the origin of either of them.
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