Neutrino Telescopes 2007

Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei

Alfredo G. Cocco Istituto Nazionale di Fisica Nucleare (Italy)

AGC, G.Mangano and M.Messina hep-ph/0703075

The longstanding questions

1) Is it possible to make a measurement of the Cosmological Relic Neutrino density ?

We know that CRN are non-relativistic and weakly-clustered

- UHE cosmic rays scattering (indirect, unknown sources)
- Torsion balance (polarization, strong $v-\overline{v}$ asymmetry)

A.Ringwald "Neutrino Telescopes" 2005 – hep-ph/0505024 G.Gelmini hep-ph/0412305

2) How to measure very low energy (< 1 keV) neutrino ?

An old idea S.Weinberg Phys.Rev. 128 (1962) 1457

In the original idea a large neutrino chemical potential (μ) could distort the electron (positron) spectrum near the endpoint energy Today we know that $\mu/T_{\nu} \leq 0.1$ and the effect is too small to be detected. BUT.....

A new fact: $m_v \neq 0$

Neutrino masses of the order of 1 eV are compatible with the present picture of our Universe

The events induced by Neutrino Capture have a unique signature provided by a gap of $2m_v$

The drawings however are not to scale.....

NCB Cross Section

a new parametrization

Beta decay rate
$$\lambda_{\beta} = \frac{G_{\beta}^2}{2\pi^3} \int_{m_e}^{W_o} p_e E_e F(Z, E_e) C(E_e, p_{\nu})_{\beta} E_{\nu} p_{\nu} dE_e$$

NCB $\sigma_{\text{NCB}} v_{\nu} = \frac{G_{\beta}^2}{\pi} p_e E_e F(Z, E_e) C(E_e, p_{\nu})_{\nu}$

The nuclear shape factors $\textit{C}_{\!\beta}$ and $\textit{C}_{\!_{\rm V}}$ both depend on the same nuclear matrix elements

It is convenient to define
$$\mathcal{A} = \int_{m_e}^{W_o} \frac{C(E'_e, p'_\nu)_\beta}{C(E_e, p_\nu)_\nu} \frac{p'_e}{p_e} \frac{E'_e}{E_e} \frac{F(E'_e, Z)}{F(E_e, Z)} E'_\nu p'_\nu dE'_e$$

$$\sigma_{\rm \scriptscriptstyle NCB} v_{\nu} = \frac{2\pi^2 \ln 2}{\mathcal{A} t_{1/2}}$$

In a large number of cases A can be evaluated in an exact way and NCB cross section depends only on Q_{β} and $t_{1/2}$ (measurable)

NCB Cross Section on different types of decay transitions

- Superallowed transitions $\sigma_{\text{\tiny NCB}} v_{\nu} = 2\pi^2 \ln 2 \frac{p_e E_e F(Z, E_e)}{f t_{1/2}}$
- This is a very good approximation also for allowed transitions since

$$\frac{C(E_e, p_\nu)_\beta}{C(E_e, p_\nu)_\nu} \simeq 1$$

• *i-th* unique forbidden

$$C(E_e, p_{\nu})^i_{\beta} = \left[\frac{R^i}{(2i+1)!!}\right]^2 \left|{}^{\scriptscriptstyle A}F^{(0)}_{(i+1)\,i\,1}\right|^2 u_i(p_e, p_{\nu})$$

$$\mathcal{A}_{i} = \int_{m_{e}}^{W_{o}} \frac{u_{i}(p'_{e}, p'_{\nu})p'_{e}E'_{e}F(Z, E'_{e})}{u_{i}(p_{e}, p_{\nu})p_{e}E_{e}F(Z, E_{e})}E'_{\nu}p'_{\nu}dE'_{e}$$

NCB Cross Section Evaluation The case of Tritium

Using the expression

$$\sigma_{\rm NCB} v_{\nu} = \frac{G_{\beta}^2}{\pi} p_e E_e F(Z, E_e) C(E_e, p_{\nu})_{\nu}$$

we obtain
$$\sigma_{\text{\tiny NCB}}(^{3}\text{H}) \frac{v_{\nu}}{c} = (7.7 \pm 0.2) \times 10^{-45} \text{ cm}^{2}$$

 $\lim \beta \to 1$

where the error is due to Fermi and Gamow-Teller matrix element uncertainties

Using shape factors ratio $\sigma_{\rm NCB}v_{\nu} = 2\pi^2 \ln 2 \frac{p_e E_e F(Z, E_e)}{f t_{1/2}}$

$$\sigma_{\rm NCB}(^{3}{\rm H})\frac{v_{\nu}}{c} = (7.84 \pm 0.03) \times 10^{-45} {\rm \,cm}^{2}$$

lim $\beta \to 1$

where the error is due only to uncertainties on Q_{β} and $t_{1/2}$

NCB Cross Section Evaluation

NCB Cross Section Evaluation using measured values of Q_{B} and $t_{1/2}$

Beta decaying nuclei having BR(β^{\pm}) > 5 % selected from 14543 decays listed in the ENSDF database

NCB Cross Section Evaluation specific cases

Isotope	Q_{eta} (keV)	Half-life (sec)	$\sigma_{ m NCB}(v_{ m }/c) \ (10^{-41}~{ m cm}^2)$
10 ~			
¹⁰ C	885.87	1320.99	5.36×10^{-3}
^{14}O	1891.8	71.152	1.49×10^{-2}
^{26m} Al	3210.55	6.3502	3.54×10^{-2}
^{34}Cl	4469.78	1.5280	5.90×10^{-2}
38m K	5022.4	0.92512	7.03×10^{-2}
^{42}Sc	5403.63	0.68143	7.76×10^{-2}
^{46}V	6028.71	0.42299	9.17×10^{-2}
50 Mn	6610.43	0.28371	1.05×10^{-1}
$^{54}\mathrm{Co}$	7220.6	0.19350	1.20×10^{-1}

Superallowed $0^+ \rightarrow 0^+$ decays used for CVC hypotesis testing (very precise measure of Q_B and $t_{1/2}$)

Isotope	Decay	Q	Half-life	$\sigma_{ m NCB}(v_{ m u}/c)$
		(keV)	(sec)	(10^{-41} cm^2)
$^{3}\mathrm{H}$	β^{-}	18.591	3.8878×10^{8}	7.84×10^{-4}
⁶³ Ni	β^{-}	66.945	3.1588×10^{9}	1.38×10^{-6}
93 Zr	β^{-}	60.63	4.952×10^{13}	2.39×10^{-10}
106 Ru	β^{-}	39.4	3.2278×10^7	5.88×10^{-4}
107 Pd	β^{-}	33	2.0512×10^{14}	2.58×10^{-10}
$^{187}\mathrm{Re}$	β^{-}	2.64	1.3727×10^{18}	4.32×10^{-11}
^{11}C	β^+	960.2	1.226×10^{3}	4.66×10^{-3}
^{13}N	β^+	1198.5	5.99×10^2	5.3×10^{-3}
^{15}O	β^+	1732	1.224×10^{2}	9.75×10^{-3}
18 F	β^+	633.5	6.809×10^{3}	2.63×10^{-3}
22 Na	β^+	545.6	9.07×10^{7}	3.04×10^{-7}
$^{45}\mathrm{Ti}$	β^+	1040.4	1.307×10^4	3.87×10^{-4}

Nuclei having the highest product $\sigma_{\rm NCB} t_{1/2}$

Relic Neutrino Detection

The cosmological relic neutrino capture rate is given by

$$\lambda_{\nu} = \int \sigma_{\rm NCB} v_{\nu} \, \frac{1}{\exp(p_{\nu}/T_{\nu}) + 1} \, \frac{d^3 p_{\nu}}{(2\pi)^3} \qquad \qquad T_{\nu} = 1.7 \cdot 10^{-4} \, \text{eV}$$

after the integration over neutrino momentum and inserting numerical values we obtain

$$2.85 \cdot 10^{-2} \frac{\sigma_{\rm NCB} v_{\nu}/c}{10^{-45} {\rm cm}^2} {\rm yr}^{-1} {\rm mol}^{-1}$$

In the case of Tritium we estimate that 7.5 neutrino capture events per year are obtained using a total mass of 100 g

Relic Neutrino Detection signal to background ratio

The ratio between capture (λ_{ν}) and beta decay rate (λ_{β}) is obtained using the previous expressions

$$\frac{\lambda_{\nu}}{\lambda_{\beta}} = \frac{2\pi^2 n_{\nu}}{\mathcal{A}}$$

In the case of Tritium we found that

$$\lambda_{\nu}(^{3}\mathrm{H}) = 0.66 \cdot 10^{-23} \lambda_{\beta}(^{3}\mathrm{H})$$

As a general result for a given experimental resolution Δ the signal to background ratio is given by

$$\frac{S}{B} = \frac{9}{2}\zeta(3) \left(\frac{T_{\nu}}{\Delta}\right)^3 \frac{1}{\left(1 + 2m_{\nu}/\Delta\right)^{3/2}} \left[\frac{1}{\sqrt{2\pi}} \int_{\frac{2m_{\nu}}{\Delta} - \frac{1}{2}}^{\frac{2m_{\nu}}{\Delta} + \frac{1}{2}} e^{-x^2/2} dx\right]^{-1}$$

where the last term is the probability for a beta decay electron at the endpoint to be measured beyond the $2m_v$ gap

Relic Neutrino Detection discovery potential

As an example, given a neutrino mass of 0.7 eV and an energy resolution at the beta decay endpoint of 0.2 eV a signal to background ratio of 3 is obtained

In the case of 100 g mass target of Tritium it would take one and a half year to observe a 5σ effect

The same result holds in case of $m_v = 0.3 \text{ eV}$ and $\Delta = 0.1 \text{ eV}$

Conclusions

The fact that neutrino has a nonzero mass has renewed the interest on Netrino Capture on Beta decaying nuclei as a tool to measure very low energy neutrino

A detailed study of NCB cross section has been performed for a large sample of known beta decays avoiding the uncertainty due to nuclear matrix elements evaluation

The relatively high NCB cross section when considered in a favourable scenario could bring cosmological relic neutrino detection within reach in a few years