Andreas Ringwald

XII International Workshop on "Neutrino Telescopes" March 6-9, 2007 Venice, Italy

Plan:

1. Vacuum Magnetic Dichroism and Birefringence

Polarized light propagation through a magnetic field: global data

2. Possible Explanations

Production of new weakly interacting light particles (WILPs)?

3. Crucial Laboratory Tests

Light or dark-current through-a-wall experiments, ...

4. Problems of Particle Interpretations

Astrophysical, cosmological, and other constraints

5. WILPs in Models with Light Extra-U(1)s

Light mini-charged particles from gauge kinetic mixing, ...

6. Summary

- Send linearly polarized laser beam through transverse magnetic field ⇒ measure changes in polarization state:
 - rotation (dichroism)
 - ellipticity (birefringence)

- Send linearly polarized laser beam through transverse magnetic field ⇒ measure changes in polarization state:
 - rotation (dichroism)
 - ellipticity (birefringence)

BFRT experiment: [Cameron *et al.* '93] (Brookhaven, Fermilab, Rochester, Trieste)

$$B \sim 2 \text{ T}, \ell = 8.8 \text{ m}, \omega = 2.4 \text{ eV}, N_{\text{pass}} = 34 - 254$$

PVLAS experiment: [Zavattini *et al.* '06] $B = 5 \text{ T}, \ell = 1 \text{ m}, \omega = 1.2 \text{ eV}, N_{\text{pass}} = 44000$

Q&A experiment: [Chen,Mei,Ni '06] $B = 2.3 \text{ T}, \ell = 1 \text{ m}, \omega = 1.2 \text{ eV}, N_{\text{pass}} = 18700$

- Send linearly polarized laser beam through transverse magnetic field ⇒ measure changes in polarization state:
 - rotation (dichroism)
 - ellipticity (birefringence)
- No signal in BFRT

BFRT experiment					
Rotation	$(L=8.8$ m, $\lambda=514.5$ nm, $ heta=rac{\pi}{4})$				
$N_{ m pass}$	$ \Delta \theta $ [nrad]	$\Delta heta_{ m noise} [{ m nrad}]$			
254	0.35	0.30			
34	0.26	0.11			
Ellipticity	$(L=8.8$ m, $\lambda=514.5$ nm, $ heta=rac{\pi}{4})$				
$N_{ m pass}$	$ \psi $ [nrad]	$\psi_{ m noise}\left[m nrad ight]$			
578	40.0	11.0			
34	1.60	0.44			
Regen. $(L = 4.4 \text{ m}, \langle \lambda \rangle = 500 \text{ nm}, N_{\text{pass}} = 200)$					
$ heta\left[\mathrm{rad} ight]$	rate [Hz]				
0	-0.012 ± 0.009				
$\frac{\pi}{2}$	0.013 ± 0.007				

[Cameron et al '93]

- Send linearly polarized laser beam through transverse magnetic field ⇒ measure changes in polarization state:
 - rotation (dichroism)
 - ellipticity (birefringence)
- No signal in BFRT; signal in PVLAS

PVLAS experiment				
Rotation ($L=1$ m, $N_{\mathrm{pass}}=44000$, $ heta=rac{\pi}{4}$)				
λ [nm]	$ \Delta heta \; [10^{-12} \mathrm{rad/pass}]$			
1064	3.9 ± 0.2			
532	6.3 ± 1.0 (preliminary)			
Ellipticity($L = 1$ m, $N_{\text{pass}} = 44000$, $\theta = \frac{\pi}{4}$)				
$\lambda \; [m nm]$	$\psi [10^{-12} \mathrm{rad/pass}]$			
1064	-3.4 ± 0.3 (preliminary)			
532	-6.0 ± 0.6 (preliminary)			

[PRL '06; IDM '06]

1. Vacuum Magnetic Dichroism and Birefringence

- Send linearly polarized laser beam through transverse magnetic field ⇒ measure changes in polarization state:
 - rotation (dichroism)
 - ellipticity (birefringence)
- No signal in BFRT; signal in PVLAS; no signal in Q&A

Q&A experiment				
Rotation($L=1$ m, $\lambda=1064$ nm, $ heta=rac{\pi}{4}$)				
$N_{ m pass}$	$\Delta heta [\mathrm{nrad}]$			
18700	-0.4 ± 5.3			

[Q&A coll. '06]

2. Possible Explanations

- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP)),

$$(g/4) \phi^{(-)} F_{\mu\nu} \tilde{F}^{\mu\nu} \left(\phi^{(+)} F_{\mu\nu} F^{\mu\nu} \right)$$
a)

Effects of Nearly Massless, Spin Zero Particles on Light Propagation in a Magnetic Field

2. Possible Explanations

- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))
 and /or

and/or

- light MiniCharged Particle (MCP)
 - anti-particle pair,

$$\partial_{\mu} \rightarrow \partial_{\mu} - \mathrm{i}\epsilon e A_{\mu}$$

Polarized Light Propagating in a Magnetic Field as a Probe for Millicharged Fermions [Gies, Jaeckel, AR '06]

A. Ringwald (DESY)

2. Possible Explanations

- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP)),

$$(g/4) \phi^{(-)} F_{\mu\nu} \tilde{F}^{\mu\nu} \left(\phi^{(+)} F_{\mu\nu} F^{\mu\nu} \right)$$

If interpreted in terms of ALP:

[Ahlers,Gies,Jaeckel,AR '06]

Venice, March 2007

2. Possible Explanations

- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP)),

$$(g/4) \phi^{(-)} F_{\mu\nu} \tilde{F}^{\mu\nu} \left(\phi^{(+)} F_{\mu\nu} F^{\mu\nu} \right)$$

If interpreted in terms of ALP:

[Ahlers,Gies,Jaeckel,AR '06]

2. Possible Explanations

- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP)),

$$(g/4) \phi^{(-)} F_{\mu\nu} \tilde{F}^{\mu\nu} \left(\phi^{(+)} F_{\mu\nu} F^{\mu\nu} \right)$$

If interpreted in terms of ALP:

[Ahlers, Gies, Jaeckel, AR '06]

Venice, March 2007

2. Possible Explanations

- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))
 and/or
 - light MiniCharged Particle (MCP)
 - anti-particle pair,

$$\partial_{\mu} \rightarrow \partial_{\mu} - \mathrm{i}\epsilon e A_{\mu}$$

If interpreted in terms of MCP:

[Ahlers, Gies, Jaeckel, AR '06]

2. Possible Explanations

- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))
 and/or
 - light MiniCharged Particle (MCP)
 - anti-particle pair,

$$\partial_{\mu} \rightarrow \partial_{\mu} - \mathrm{i}\epsilon e A_{\mu}$$

If interpreted in terms of MCP:

[[]Ahlers, Gies, Jaeckel, AR '06]

2. Possible Explanations

- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))
 and/or
 - light MiniCharged Particle (MCP)
 - anti-particle pair,

$$\partial_{\mu} \rightarrow \partial_{\mu} - \mathrm{i}\epsilon e A_{\mu}$$

If interpreted in terms of MCP:

[Ahlers, Gies, Jaeckel, AR '06]

2. Possible Explanations

- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))
 and/or
 - light MiniCharged Particle (MCP)
 - anti-particle pair,

$$\partial_{\mu} \rightarrow \partial_{\mu} - \mathrm{i}\epsilon e A_{\mu}$$

If interpreted in terms of MCP:

[Ahlers, Gies, Jaeckel, AR '06]

A. Ringwald (DESY)

2. Possible Explanations

- Viable explanation in terms of real and virtual production of
 - light neutral spin-zero boson (Axion-Like Particle (ALP))

 $\operatorname{and}/\operatorname{or}$

- light MiniCharged Particle (MCP)
 - anti-particle pair,

 $\partial_{\mu} \rightarrow \partial_{\mu} - i\epsilon e A_{\mu}$

- Explanation in terms of real and virtual production of Second Photon (SP) in fusion model of photon: [de Broglie '32]
 - Photon: S = 1 bound state of spin 1/2 particle-antiparticle pair
 - SP: S = 0 bound state

Parameters: Mass splitting Δ and magnetic moment $\beta\mu_B$ of particle

A. Ringwald (DESY)

If interpreted in terms of SP:

Venice, March 2007

3. Crucial Laboratory Tests

• Laser polarization experiments at higher magnetic fields

BMV (Toulouse): 11 T pulsed magnet

3. Crucial Laboratory Tests

- Laser polarization experiments at higher magnetic fields
- Light shining through a wall

"Light shining through a wall"

[Sikivie '83;Ansel'm '85;Van Bibber et al. '87]

Name	Laboratory	Magnets	$P_{\gamma\phi\gamma} g_{\rm PVLAS}$
ALPS	DESY/D	$B_1 = B_2 = 5 \text{ T}$	10
		$\ell_1=\ell_2=4.21~\mathrm{m}$	$\sim 10^{-19}$
BMV	LULI/F	$B_1 = B_2 = 11 \text{ T}$	0.1
		$\ell_1=\ell_2=0.25~\mathrm{m}$	$\sim 10^{-21}$
LIPSS	Jlab/USA	$B_1 = B_2 = 1.7 \text{ T}$	00 F
		$\ell_1=\ell_2=1 \text{ m}$	$\sim 10^{-23.5}$
OSQAR	CERN/CH	$B_1 = B_2 = 11 \text{ T}$	
		$\ell_1=\ell_2=7~{\rm m}$	$\sim 10^{-17}$
		$B_1 = 5 {\rm T}$	22
PVLAS	Legnaro/I	$\ell_1 = 1 \text{ m}$	$\sim 10^{-23}$
		$B_2=2.2 \; \mathrm{T}$	
		$\ell_2=0.5~{\rm m}$	

Venice, March 2007

3. Crucial Laboratory Tests

- Laser polarization experiments at higher magnetic fields
- Light shining through a wall

Axion-Like Particle Search:

[DESY, Laser Zentrum Hannover, Sternwarte Bergedorf]

$$B = 5 \text{ T}, \ell = 4.2 \text{ m}, \underbrace{\langle P \rangle = 0.2 \text{ kW}, \omega = 1.2 \text{ eV}}_{\dot{N}_0 \sim 1 \times 10^{21}/\text{s}}, N_r = 0$$

Test of ALP interpretation of PVLAS in summer 2007 Venice, March 2007

3. Crucial Laboratory Tests

- Laser polarization experiments at higher magnetic fields
- Light shining through a wall
- Dark current through a wall

3. Crucial Laboratory Tests

- Laser polarization experiments at higher magnetic fields
- Light shining through a wall
- Dark current through a wall

Cryogenic Current Comparator:

[DESY, GSI, Universität Jena]

[M. Wendt TESLA2004]

3. Crucial Laboratory Tests

- Laser polarization experiments at higher magnetic fields
- Light shining through a wall
- Dark current through a wall $\log_{10} \epsilon_{-6}$

[Gies, Jaeckel, AR unpubl.]

3. Crucial Laboratory Tests

- Laser polarization experiments at higher magnetic fields
- Light shining through a wall
- Dark current through a wall
- Invisible Orthopositronium decay

"Search for Invisible Orthopositronium Decay" [Dobroliubov,Ignatiev '89]

BR(OP
$$\rightarrow \epsilon^+ \epsilon^-) \simeq \frac{3\pi\epsilon^2}{4\alpha(\pi^2 - 9)} \simeq 371 \epsilon^2$$

Venice, March 2007

3. Crucial Laboratory Tests

- Laser polarization experiments at higher magnetic fields
- Light shining through a wall
- Dark current through a wall
- Invisible Orthopositronium decay
- Searches for excess e^- from elastic $\epsilon^{\pm}e^-$ scattering in detector near nuclear reactor

- Nuclear power reactors with $P>2~{\rm GW}^2$ emit more than $10^{20}~\gamma/{\rm s}$
- These $\gamma {\rm s}$ may convert within reactor into $\epsilon^+\epsilon^-$ pairs
- A small fraction of these particles could lead to an observable excess of electrons from $\epsilon^{\pm} e^{-}$ scattering in a detector
- Recent results from the TEXONO experiment set up at the Kuo-Sheng Nuclear Power Station (2.8 GW) in Taiwan probing for $\mu_{\overline{\nu}e}$ by searching for an excess of events from νe^- magnetic scattering [TEXONO Coll. '03]
- \Rightarrow Bound on fractional electric charge,

$$\epsilon \lesssim 10^{-5}$$
, for $m_{\epsilon} \lesssim 1 \text{ keV}$

• May be improved in near future with massive liquid argon detector

- Energy loss of stars:
 - ALPs: Primakoff $\gamma Z \rightarrow \phi Z$
 - MCPs: plasmon decay $\gamma^* \to \epsilon^+ \epsilon^-$

4. Problems of Particle Interpretations

- Energy loss of stars:
 - ALPs: Primakoff $\gamma Z \rightarrow \phi Z$
 - MCPs: plasmon decay $\gamma^* \rightarrow \epsilon^+ \epsilon^-$
 - SPs: no problem
- ALP 0⁺: Non-Newtonian force,

$$V(r) = G \frac{m_1 m_2}{r} + \frac{y^2}{4\pi} \frac{n_1 n_2}{r} e^{-m_{\phi} r}$$

[Adelberger et al. '06]

from Yukawa coupling

$$egin{array}{rcl} \mathcal{L}_{\phi pp} &=& y \phi \overline{\Psi}_p \Psi_p \ y &\simeq& rac{3}{2} rac{lpha}{\pi} (gm_p) \log rac{\Lambda}{m_p} \end{array}$$

A. Ringwald (DESY)

From torsion-balance experiment:

$$g < 4 \times 10^{-17} \,\mathrm{GeV}^{-1},$$

for
$$m_{\phi} = 1 ext{ meV}$$
; $\Lambda \gg m_p$

[Dupays et al. '06;Adelberger et al. '06] Way out: ALP 0⁺ couples only to additional light U(1) bosons mixing with photon Venice, March 2007

 Consider extension of SM with additional "hidden sector" U(1)'s ⇒ in general gauge kinetic mixing with "visible" U(1), e.g.

$$\mathcal{L} = -\frac{1}{4} F^T \mathcal{K}_F F + \frac{1}{2} A^T \mathcal{M}_A^2 A + ejA,$$

with special mixing

$$\mathcal{K}_F = \left(\begin{array}{rrr} 1 & \chi & \chi \\ \chi & 1 & 0 \\ \chi & 0 & 1 \end{array}\right)$$

Mixing may arise from integrating out heavy particles:

e.g. threshold effect from two species of fermions, (e_a,e_b) and $(e_a,-e_b)$, with masses m and m':

$$\chi \simeq \frac{e_a e_b}{6\pi^2} \log\left(\frac{m'}{m}\right)$$

 Consider extension of SM with additional "hidden sector" U(1)'s ⇒ in general gauge kinetic mixing with "visible" U(1), e.g.

$$\mathcal{L} = -\frac{1}{4} F^T \mathcal{K}_F F + \frac{1}{2} A^T \mathcal{M}_A^2 A + ejA,$$

with special mixing

$$\mathcal{K}_F = \left(\begin{array}{rrr} 1 & \chi & \chi \\ \chi & 1 & 0 \\ \chi & 0 & 1 \end{array}\right)$$

Mixing may arise from integrating out heavy particles:

e.g. closed string exchange between visible sector D-branes and hidden sector anti-D-branes,

$$\chi \sim g_a g_b \left(\frac{2^{(8-p)/2}}{\alpha_p} \frac{M_s}{M_P}\right)^{\frac{2(5-p)}{6-p}} \left(\frac{R}{r}\right)^{\frac{d-p+3}{6-p}}$$

[Abel, Jaeckel, Khoze, AR '06]

 Consider extension of SM with additional "hidden sector" U(1)'s ⇒ in general gauge kinetic mixing with "visible" U(1), e.g.

$$\mathcal{L} = -\frac{1}{4} F^T \mathcal{K}_F F + \frac{1}{2} A^T \mathcal{M}_A^2 A + ejA,$$

with special mixing and mass pattern

$${\cal K}_F = \left(egin{array}{ccc} 1 & \chi & \chi \ \chi & 1 & 0 \ \chi & 0 & 1 \end{array}
ight), {\cal M}_A^2 = \left(egin{array}{ccc} m_\gamma^2 & 0 & 0 \ 0 & \mu^2 & 0 \ 0 & 0 & 0 \end{array}
ight)$$

• Hidden sector CP, with special charge assignment (0, e, -e), acquires visible mini-charge

$$\epsilon \simeq \begin{cases} -\chi & \text{for} \quad m_{\gamma} = 0\\ (\mu^2/\omega_{\rm p}^2) \chi & \text{for} \quad m_{\gamma} = \omega_{\rm p} \gg \mu \end{cases}$$

 $\Rightarrow \text{ Viable MCP explanation of PVLAS } (m_{\gamma} = 0)$ for $\chi \sim 10^{-6}$, $m_{\epsilon} \lesssim 0.1$ eV;

Venice, March 2007

A. Ringwald (DESY)

 Consider extension of SM with additional "hidden sector" U(1)'s ⇒ in general gauge kinetic mixing with "visible" U(1), e.g.

$$\mathcal{L} = -\frac{1}{4} F^T \mathcal{K}_F F + \frac{1}{2} A^T \mathcal{M}_A^2 A + ejA,$$

with special mixing and mass pattern

$$\mathcal{K}_F = \left(\begin{array}{rrr} 1 & \chi & \chi \\ \chi & 1 & 0 \\ \chi & 0 & 1 \end{array}\right)$$

• Hidden sector CP, with special charge assignment (0, e, -e), acquires visible mini-charge

$$\epsilon \simeq \begin{cases} -\chi & \text{for} & m_{\gamma} = 0\\ (\mu^2/\omega_{\text{p}}^2) \chi & \text{for} & m_{\gamma} = \omega_{\text{p}} \gg \mu \end{cases}$$

 $\Rightarrow \mbox{ Viable MCP explanation of PVLAS } (m_{\gamma} = 0) \\ \mbox{ for } \chi \sim 10^{-6}, \ m_{\epsilon} \lesssim 0.1 \ \mbox{eV}; \mbox{ in accordance} \\ \mbox{ with the life time of stars } (m_{\gamma} = \omega_{\rm p} \sim \mbox{keV}), \\ \mbox{ if } \mu \lesssim 0.1 \ \mbox{eV} \qquad [Abel et al. '06]$

A. Ringwald (DESY)

 Consider extension of SM with additional "hidden sector" U(1)'s ⇒ in general gauge kinetic mixing with "visible" U(1), e.g.

$$\mathcal{L} = -\frac{1}{4} F^T \mathcal{K}_F F + \frac{1}{2} A^T \mathcal{M}_A^2 A + ejA,$$

with special mixing and mass pattern

$$\mathcal{K}_F = \left(\begin{array}{rrr} 1 & \chi & \chi \\ \chi & 1 & 0 \\ \chi & 0 & 1 \end{array}\right),$$

• Hidden sector CP, with special charge assignment (0, e, -e), acquires visible mini-charge

$$\epsilon \simeq \begin{cases} -\chi & \text{for} & m_{\gamma} = 0\\ (\mu^2/\omega_{\text{p}}^2) \chi & \text{for} & m_{\gamma} = \omega_{\text{p}} \gg \mu \end{cases}$$

- $\Rightarrow \text{ Viable MCP explanation of PVLAS } (m_{\gamma} = 0)$ for $\chi \sim 10^{-6}$, $m_{\epsilon} \leq 0.1 \text{ eV}$; in accordance with the life time of stars $(m_{\gamma} = \omega_{\text{p}} \sim \text{keV})$, if $\mu \leq 0.1 \text{ eV}$ [Abel *et al.* '06]
- $\begin{array}{l} \Rightarrow \quad \mbox{Extend minimal model by hidden sector scalar,} \\ m_{\phi} \sim \mbox{meV}, \mbox{ coupled to hidden sector CPs} \Rightarrow \\ \mbox{Viable ALP explanation} \\ \mbox{A. Ringwald (DESY)} \\ \end{array}$

 Coupling to two photons can be arranged to be in PVLAS range,

$$g \sim \frac{\alpha}{2\pi} \chi^2 \frac{y_f}{m_f} \sim 2 \times 10^{-6} \text{ GeV}^{-1} \left(\frac{\chi}{10^{-6}}\right)^2 \left(\frac{y_f \text{ eV}}{m_f}\right)^2$$

• Yukawa coupling to proton,

$$y \sim \frac{\alpha}{\pi} \chi^2 \frac{\mu}{m_f},$$

suppressed by factor μ/m_p compared to case without kinetic mixing \Rightarrow no problem with non-Newtonian forces, if $\mu \lesssim {\rm meV}$

6. Summary

- The evidence for a vacuum magnetic dichroism and birefringence by **PVLAS** has triggered a lot of theoretical and experimental activities:
 - Particle interpretations alternative to ALP interpretation: e.g. MCP
 - Models, which evade strong astrophysical and cosmological bounds on such particles, have been found. Require typically even more WILPs than just the ones introduced for the solution of the PVLAS puzzle
 - Decisive laboratory based tests of particle interpretation of PVLAS anomaly in very near future. More generally, experiments will dig into previously unconstrained parameter space of above mentioned models
- Experiments exploiting low energy photons may give information about fundamental particle physics complementary to the one obtained at high energy colliders