Direct measurements of neutrino masses

β decays: neutrino mass modify the electron spectrum shape close to the endpoint E_0.

Da E. Fermi, "Vershuch einer Theorie der beta-Strahlen", Z.Phys.88, 161-77 (1934)

A very tiny effect
Electron spectrum:

\[\frac{dN}{dE} = G_F^2 \frac{m_e^5 c^4}{2\pi^3 \hbar^7} \cos^2(\theta_C) |M|^2 F(Z, E)pE(E_\circ - E)[(E_\circ - E)^2 - m_\nu^2]^{1/2} \]

- max electron energy: \(E_{e}^{Max} = E_\circ - m_\nu = M_s - M_e - m_\nu \)
- \(M_s, M_e \): atomic mass (start, end of the process)
- \(F(Z, E) \): Coulomb correction
- Neutrino mass effects visible only close to \(E_\circ \).
- Decay rate in a region \(\Delta E \) close to \(E_\circ \) depends from \(Q = E_\circ - m_e \) and \(\propto (\Delta E/Q)^3 \).

Good nuclei candidates must have small Q and a high decay rate (lifetime “short”).

Best candidate: Tritium:

\[^3H \rightarrow ^3He + e^- + \bar{\nu}_e \]

\(E_\circ \simeq 18.6 \text{ KeV} \)

Fraction of useful decays: \(\sim 10^{-10} \).
Experimental progress of neutrino mass limits

![Graph showing the experimental progress of neutrino mass limits over time.](image-url)
Magnetic Adiabatic Collimation + Electrostatic Filter (MAC-E-Filter)

Electron kinetic energy in the solenoid:

\[T = \frac{1}{2}mv^2 = \frac{1}{2}mv_{\perp}^2 + \frac{1}{2}v_z^2 = T_{\perp} + T_z = T_0 = \text{cost} \]

\[v_{\perp} = \omega r, \quad mv_{\perp}r = \text{cost} \Rightarrow \]

\[T_{\perp} = \frac{1}{2}mv_{\perp}^2 = \frac{1}{2}mv_{\perp}r\omega \propto B \]

\[B_1 = \frac{B_0}{5000} (\sim 1.7 \times 10^{-3}T) \Rightarrow T_{\perp}(B_1) = \frac{T_{\perp}(B_0)}{5000} \]

\Rightarrow \text{In the smallest } B_T \text{ region the trajectory is almost longitudinal}

\Rightarrow \text{Applying an electrostatic potential } -U_0: \text{ electrons transit if}

\[T_z(B_1) = T_0 - 2 \times 10^{-4}T_{\perp}(B_0) \geq eU_0 (= T_{\text{min}}) \]
\[T_z(B_1) = T_0 - 2 \times 10^{-4} T_{\perp}(B_0) \geq eU_0 (= T_{\text{min}}) \]

\[T \geq T_{\text{min}} (1 - 2 \times 10^{-4}) \]

\[\Delta T = 2 \times 10^{-4} T_{\text{min}} \]

For \(T_{\text{min}} = 18.6 \text{ KeV} \) detector resolution is \(\Delta T \simeq 3.7 \text{ eV} \).

- Excellent energy resolution
- Large geometrical acceptance: great luminosity.
- INTEGRAL spectrometer: no direct spectral information.
The negative mass square problem

The first data of the two most sensitive experiments: Mainz and Troitsk, showed a count excess close to the end point: \(\Rightarrow \) fit to a negative \(m_\nu^2 \).

To solve the problem:

- Add additional arbitrary parameters to the fit
- Invoke new exotic physics to explain the problem
- Fix the experimental problem

Particle Data Book 1998: “...Unexpected effects have resulted in significantly negative \(m_\nu \) in the new, precise tritium beta decay experiments. It is felt that a real neutrino mass as large as 10-15 eV would cause observable spectral distortions even in the presence of the end-point count excess.
Mainz: (final) neutrino mass results 1998-2001

detailed investigations of systematic effects

- Roughening transition of T_2 film avoided by keeping film $T < 2K$

- Inelastic scattering in T_2 film
determination of cross section and energy loss function

- Self charging of T_2 film
determination of critical field

- New: neighbour excitation amplitude fitted with data
 agrees with calculations

M. Mezzetto, Lezioni Dottorato Ricerca 2008
Mainz: neutrino mass limits

final ν-mass analysis from 1998-2001 measurements

(119 days, 6 runs: Q5-8,Q11,Q12)

1998/99 : 15 weeks
2001: 5.5 weeks

Signal: x5 improved
Background: x2 reduced
S/B ratio: x10 improved

detailed investigations:

improvements for many systematic effects
Katrin Experiment (Karlsruhe, start in 2008)

Present Mainz Setup:

Improve m_ν sensitivity by one order of magnitude (2 eV → 0.2 eV) ⇒ two orders of magnitude on m_ν^2 (4 ev2 → 0.04 eV2)

PROBLEM: endpoint count rate falls very rapidly ($\propto \delta E^3$)

- Improve statistics: more powerful tritium source ($\times 80$) and longer running time (100 days → 1000 days)
- Improve energy resolution: Large electrostatic spectrometer with $\delta E = 1$ eV ($\times 4$)
- Better control of systematics: two independent tritium sources (molecular and gaseous), decrease energy losses by one order of magnitudes.
The KArlsruhe TRItium Neutrino Experiment

Klaus Eitel, Forschungszentrum Karlsruhe

A different approach: microbolometers

Measure total decay energy with (micro)bolometers instead that electron momentum with spectrometers

Good: No problem with nuclei final states: the whole energy is measured
Completely different systematic effects (no backscattering, energy losses in the source, solid state excitations …)
Only limit on detector mass: how many microbolometers can be assembled

Bad: Slow detectors sensitive to all the decays ⇒ pile-up problems
Energy dependent backgrounds
Worse resolution
Calibration and stability of all the detectors

Microbolometers array, each sensor is $\sim 500 \mu g$
Very low Q material: Rhenium ($Q=2460$ eV, $\tau_{1/2} = 4.3 \cdot 10^{10}$ years).
Milano μ-calorimeters for ^{187}Re β decay study

Neutrino mass measurement with arrays of 10 AgReO$_4$ μ-calorimeters.

- lower pile-up
- higher statistics

Absorbers
AgReO$_4$ single crystals
^{187}Re fraction \sim0.32
$A_\beta \approx 5.4 \times 10^{-4}$ Hz/µg
Mass 250 \sim 300 µg
6.2 \cdot 10^6 \^{187}Re \text{ decays above } 700 \text{ eV} \\
8751 \text{ hours mg (of AgReO}_4\text{)}

Fit with the following free parameters:

1. β end - point.
2. m_ν^2
3. spectrum normalization
4. pile-up normalization
5. background rate

\begin{align*}
\text{RESULTS} \\
Q &= 2465.3 \pm 0.5_{\text{stat}} \pm 1.6_{\text{sys}} \text{ eV} \\
\tau_{1/2} &= 43.2 \pm 0.2_{\text{stat}} \pm 0.1_{\text{sys}} \text{ Gy} \\
m_\nu^2 &= -112 \pm 207_{\text{stat}} \pm 90_{\text{sys}} \text{ eV}^2 \\
m_\nu &= 15 \text{ eV (90\% CL)}
\end{align*}
MANU-2: sensitivity

- **Calorimeter c#28 c#31 c#35 c#55**
 - R_{Re} (g) 310 210 215 215
 - C_{Re} (pJ/K) 3.3 0.75 0.5 0.5
 - C_{sensor} (pJ/K) 3.6 1.8 1.8 0.02
 - R_{sensor} (M) 4.9M 7.8M 6.6M 1
 - V_{noise} (extim.) (mV) 4.5 5.2 4.7 *
 - Baseline noise (mV) 4.5(.2) 4.0 5.4(.2) 650pA
 - Extim. E_{eV} FWHM@5.9keV 28.2 82.3 44.7 5.8
 - E_{eV} FWHM@5.9keV 77.6 44.7 37.6 11

Graphs:

- **Data 5**
 - 5 eV fwhm, $F(p.p.)=7e-8$
 - 10 eV fwhm - $F(p.p.)=1.4e-7$

- **Energy vs. Counts:**
 - 11 eV FWHM

IFAE, Pavia

April, 19th, 2006

Flavio Gatti
Proposal MARE, down to 0.2 eV

Sensitivity at 90% c.l. [eV]

0.6
0.5
0.4
0.3
0.2
0.1

0 2 4 6 8 10
Measurement live time [y]

10000 detectors deployed per year

(2.5, 2, 5)
(5.0, 5, 20)
(5.0, 1, 10)
(2.5, 1, 10)
mν in the future

Spettrometri

- **1990**: 20 eV
- **1995**: 20-10 eV
- **2000**: 2.2 eV
- **2005**: 2 eV
- **2010**: 0.2 eV

Calorimetri

- **Sandro Vitale**: 1985, 187 Re
- **1990**: 26 eV
- **1995**: 15 eV
- **2000**: 20 eV
- **2005**: 2 eV
- **2010**: 0.2 eV
- **2015**: (O. Cremonesi)
Neutrinoless Double Beta Decays

Another way to measure neutrino mass:

\[\beta\beta_{0\nu} \, (A,Z) \rightarrow (A,Z+2) + e^- + e^- \]

\[
\left(T_{1/2}^{0\nu} \right) = G_{0\nu}^{0\nu}(E_0, Z) |M_{0\nu}^{0\nu} gV^2_{A} M_{F}^{0\nu}|^2 \langle m_{\nu} \rangle^2
\]

To happen it needs:

- Violate by 2 units lepton number conservation \((\Delta L = 2)\)
- Majorana neutrinos: neutrino = antineutrino.
- Massive neutrinos

M. Mezzetto, Lezioni Dottorato Ricerca 2008
Similar processes are allowed:

\[\beta\beta 2\nu: (A,Z) \rightarrow (A,Z+2) + e^- + e^- + \nu_e^c + \nu_e^c \quad (\Delta L = 0) \]

\[\left(T^{2\nu}_{1/2} \right) = G^{2\nu}(E_\circ, Z)|M^{2\nu}_{GT}|^2 \]

\[\beta\beta \chi^0: (A,Z) \rightarrow (A,Z+2) + e^- + e^- + \chi^0 \]

\[\left(T^{\chi^0}_{1/2} \right) = G^{\chi^0}(E_\circ, Z)|M^{0\nu}_{GT} - \frac{g_Y^2}{g_A^2} M^{0\nu}_{F}|^2 < g_{e\nu}^2 \]

\[\beta\beta \text{ SUSY: } (A,Z) \rightarrow (A,Z+2) + e^- + e^- \]
Beta and Double Beta mass measurement interplay

β and $0\nu2\beta$ observables in terms of the mass eigenstates m_i, the mixing angles θ_{ij} and the Majorana phases α e β:

\[
m_{\nu e} = \left(\sum_i |V_{ei}|^2 m_i^2 \right)^{1/2} = \left(\cos^2 \theta_{13} (m_1^2 \cos^2 \theta_{12} + m_2^2 \sin^2 \theta_{12}) + m_3^2 \sin^2 \theta_{13} \right)^{1/2}
\]

(1)

\[
|m_{ee}| = \left| \sum_i V_{ei}^2 m_i \right| = \left| \cos^2 \theta_{13} (m_1 \cos^2 \theta_{12} + m_2 e^{2i\alpha} \sin^2 \theta_{12}) + m_3 e^{2i\beta} \sin^2 \theta_{13} \right|.
\]

(2)
\(0\nu\) and \(2\nu\beta\beta\) decays have different electron spectra. Nuclei are needed where:

- Single beta decays are suppressed
- \(0^+ \rightarrow 0^+\) transitions
- Abundant isotopes in nature.

Experimental merit factor

\[
T_{1/2}^{0\nu} \propto \frac{a}{A} \sqrt{\frac{M \cdot t}{B \cdot \Delta E}} \cdot \epsilon
\]

- \(a\): isotopic abundance
- \(A\): atomic mass
- \(M\): mass
- \(t\): running time
- \(B\): background rate
- \(\epsilon\): efficiency
- \(\Delta E\): energy resolution

Extremely rare process: \(T_{1/2}^{0\nu} > 10^{24}\) years for \(\langle m_{\nu_e} \rangle = \mathcal{O}(1\, eV)\), \(\Rightarrow\) low noise techniques

- Deep underground experiments
- Very efficient active and passive radiation shields.
Experimental techniques

Geochemical Experiments Look for an abnormal abundance of the nucleus (A,Z+2) produced in geological times by the $\beta\beta$ decay of the nucleus (A,Z).

GOOD \Rightarrow Very long integrated decay time and large samples

BAD \Rightarrow No way to separate neutrinoless and two neutrino decays. Heavy assumptions on the geological history of the sample. Evidence of $\beta\beta$ decays in ^{82}Se, ^{96}Zr, ^{128}Te, ^{130}Te.

Radiochemical Experiments Store a $\beta\beta$ candidate material. After a while, count the nuclei produced by $\beta\beta$ decays.

Again, impossible to separate neutrinoless $\beta\beta$ from 2 neutrino $\beta\beta$. Successfully used to measured 2 neutrino $\beta\beta$ decays in ^{238}U in ^{238}Pu.

Direct measurements The only way to identify neutrinoless double beta decays. Two possible experimental techniques:

Spectrometers (source \neq detector), a passive source of $\beta\beta$ emitters is embedded within an electron tracker. All the candidate nuclei can be tested but limited experimental resolution.

Calorimeters :source = detector. Limited choice of materials but excellent experimental resolution and reduction of backgrounds.
Big systematic errors in the computation of the nuclear matrix elements ⇒ search the process in different nuclei.

Double beta decays with 2 neutrinos signals are used as a control sample to check the estimations of the nuclei matrices (the process involved has however a completely different set of intermediate states).

\[T^{0\nu} = S^{0\nu} \langle m_\nu \rangle^2 \]

\(S^{0\nu} \): Nuclear sensitivity = \(G^{0\nu} |M^{0\nu}|^2 \)

\(G^{0\nu} \): Phase space volume \(\propto Q_{\beta\beta}^5 \) ⇒ High z nuclei

\(M^{0\nu} \): Nuclear matrix element
Nuclear Matrix Element Calculations

\[T^{0\nu}_{1/2} = \frac{1}{\Gamma(Q^{5}_{\beta\beta})} \frac{M^2}{<m_{ee}>^2} \]

- 76Ge \rightarrow^{76}Se \hspace{1cm} Q_{\beta\beta} = 2039 \text{ keV} \hspace{1cm} \text{nat. abund.} = 7.4\%
- 100Mo \rightarrow^{100}Ru \hspace{1cm} Q_{\beta\beta} = 3034 \text{ keV} \hspace{1cm} \text{nat. abund.} = 9.6\%
- 130Te \rightarrow^{130}Xe \hspace{1cm} Q_{\beta\beta} = 2529 \text{ keV} \hspace{1cm} \text{nat. abund.} = 34\%
- 136Xe \rightarrow^{136}Ba \hspace{1cm} Q_{\beta\beta} = 2479 \text{ keV} \hspace{1cm} \text{nat. abund.} = 8.9\%

$T_{1/2}$ for nuclear matrix element calculations

- \(<m_{ee}> = 50 \text{ meV} \)
- truncated shell model
 - Hoxton (1984)
- nuclear shell model
 - Caurier (1999)
- QRPA, schematic \(\delta \) force
 - Vogel (1988)
- QRPA, G–matrix inter.
 - Staudt (1990)
- renormalized QRPA
 - Toivanen (1995)
- QRPA, no p–n pairing
 - Faessler (1996)

Selection of calculations from Elliott & Vogel, hep-ph/0202264

Need more than one isotope to get information about \(<m_{ee}> \)

- 11 kG of enriched (86%) ^{76}Ge, in 5 crystals.
- Germanium is both the emitter and the detector.

Background rate: 0.11 counts/KeV/kg/yr
Signal efficiency: $\sim 100\%$
Energy resolution: ~ 3.5 keV
Duty cycle: $\sim 80\%$

$T^{0\nu}_{1/2} > 1.3 \cdot 10^{25}$ years ($90\% C.L.$) $\Rightarrow \langle m_\nu \rangle \leq 0.35(0.42) eV$

$T^{2\nu}_{1/2} \approx 1.55 \cdot 10^{21}$ years
Evidence of neutrinoless double beta decays

71.7 Kg yr
\[T_{1/2}^{0\nu} = (0.69 - 4.18) \times 10^{25} \text{ years} \]
\[m_\nu = 0.44(0.24 - 0.58) \text{ eV} \]
Significance: 4.2\(\sigma \)
Events in the \(\beta\beta \) peak: 29
Pulse shape analysis of events confined in just one crystal.
Select events compatible with the $\beta\beta$ shape.
The bolometric technique for the study of DBD was proposed by E. Fiorini and T.O. Niinikoski in 1983.

Source = detector

Bolometric technique:

- 0ν DBD is a factor 5-10 faster than in 76Ge
- A.I.: 34% ⇒ enrichment not necessary

Nuclide under study: 130Te

CUORICINO source

$$6.4 \times 10^{25} \text{ 130Te nuclei}$$

Bolometric technique: the nuclear energy is measured as a temperature increase of a single crystal

$$\Delta T = \frac{E}{C}$$

In order to get low specific heat, the temperature must be very low (5 - 10 mK)

Typical signal sizes: 0.1 mK/MeV, converted to about 1 mV/MeV
Cryogenic Detectors

Heat bath (~8 mK)

Weak thermal coupling (G~4 pW/mK)

Thermometer (NTD Ge, R~100 MΩ)

Adsorber crystal (TeO₂, C~10⁻⁹ J/K)

Cryodet features
- wide choice of detector materials
- good energy resolution
- true calorimeters
- velocity

ΔT = E/C

Amplitude [a.u.] vs. Time [s]
CUORICINO bolometers

Absorber crystal
The absorber is a 5x5x5 cm\(^3\) crystal of TeO\(_2\) which contains the neutrinoless DBD candidate \(^{130}\text{Te}\).

Temperature sensor
The thermal signal is measured by means of an NTD Ge Thermistor

\[
R(T) = R_0 \exp \sqrt{\frac{T_0}{T}}
\]
Cuoricino result on ^{130}Te $\beta\beta$–0ν decay

Anticoincidence background spectrum of the 5x5x5 cm3 crystals around the 1ν–0ν region

$\tau_{1/2}^{0\nu} \geq 1.86 \cdot 10^{24}$ y [90% CL] \quad \Rightarrow \quad \langle m_{\nu} \rangle \leq 0.20 – 1.05$ eV* [90% CL]

* Dependent on the value for the nuclear matrix elements

Total statistic ~ 5.36 kg (^{130}Te) × y

b = 0.18 ± 0.02 c/keV/kg/y

Maximum Likelihood flat background + fit of 2505 peak

M. Mezzetto, Lezioni Dottorato Ricerca 2008
Cuoricino vs Heidelberg Moscow

<table>
<thead>
<tr>
<th>Parameter</th>
<th>He-Mo</th>
<th>Cuoricino</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{\beta \beta}$ (keV)</td>
<td>2039</td>
<td>2529</td>
</tr>
<tr>
<td>Detector mass (kg)</td>
<td>11</td>
<td>40.7</td>
</tr>
<tr>
<td>Active mass (kg)</td>
<td>9.5</td>
<td>11</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>80%</td>
<td>64%</td>
</tr>
<tr>
<td>Energy resolution (keV)</td>
<td>3.5</td>
<td>8</td>
</tr>
<tr>
<td>Efficiency</td>
<td>100%</td>
<td>85%</td>
</tr>
<tr>
<td>Background rate (counts/kg/keV/yr)</td>
<td>0.11</td>
<td>0.19</td>
</tr>
<tr>
<td>Merit factor</td>
<td>1</td>
<td>0.96</td>
</tr>
</tbody>
</table>
The NEMO3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes
cyindrical, $S = 20 \text{ m}^2$, $e \sim 60 \text{ mg/cm}^2$

Tracking detector:
drift wire chamber operating
in Geiger mode (6180 cells)
Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H$_2$O

Calorimeter:
1940 plastic scintillators
coupled to low radioactivity PMTs

Magnetic field: 25 Gauss
Gamma shield: Pure Iron ($e = 18 \text{ cm}$)
Neutron shield: 30 cm water (ext. wall)
40 cm wood (top and bottom)
(since march 2004: water - boron)

Able to identify e^+, e^-, and γ
decay isotopes in NEMO-3 detector

- 100Mo 6.914 kg
 $Q_\beta = 3034$ keV

- 82Se 0.932 kg
 $Q_\beta = 2995$ keV

- 116Cd 405 g
 $Q_\beta = 2805$ keV

- 96Zr 9.4 g
 $Q_\beta = 3350$ keV

- 150Nd 37.0 g
 $Q_\beta = 3367$ keV

- 48Ca 7.0 g
 $Q_\beta = 4272$ keV

- 130Te 454 g
 $Q_\beta = 2529$ keV

- nat$^\text{Te}$ 491 g

- Cu 621 g

(All the enriched isotopes produced in Russia)

Xavier Sarazin for the NEMO-3 Collaboration
M. Mezzetto, Lezioni Dottorato Ricerca 2008

Neutrino 2004 Paris 14-19 June 2004
Nemo 3 results on neutrinoless double beta decays

Phys.Rev.Lett 95, 182302, 2005

\[T_{1/2}(^{100}\text{Mo}) = 4.6 \cdot 10^{23} \text{ years} \Rightarrow m_{ee} < (0.7 - 2.8) \text{ eV} \]
\[T_{1/2}(^{82}\text{Se}) = 1.0 \cdot 10^{23} \text{ years} \Rightarrow m_{ee} < (1.7 - 4.9) \text{ eV} \]
Present experimental situation

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Experiment</th>
<th>%</th>
<th>Q</th>
<th>Enr</th>
<th>Technique</th>
<th>$0 \ y$</th>
<th>$<m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{48}Ca</td>
<td>Elegant IV</td>
<td>0.19</td>
<td>4271</td>
<td></td>
<td>scintillator</td>
<td>$>1.4 \times 10^{22}$</td>
<td>7-45</td>
</tr>
<tr>
<td>^{76}Ge</td>
<td>Heidelberg-Moscow</td>
<td>7.8</td>
<td>2039</td>
<td>87</td>
<td>ionization</td>
<td>$>1.9 \times 10^{25}$</td>
<td>12 - 1</td>
</tr>
<tr>
<td>^{76}Ge</td>
<td>IGEX</td>
<td>7.8</td>
<td>2039</td>
<td>87</td>
<td>Ionization</td>
<td>$>1.6 \times 10^{25}$</td>
<td>14 – 1.2</td>
</tr>
<tr>
<td>^{76}Ge</td>
<td>Klapdor et al</td>
<td>7.8</td>
<td>2039</td>
<td>87</td>
<td>ionization</td>
<td>1.2×10^{25}</td>
<td>.44</td>
</tr>
<tr>
<td>^{82}Se</td>
<td>NEMO 3</td>
<td>9.2</td>
<td>2995</td>
<td>97</td>
<td>tracking</td>
<td>$>1.0 \times 10^{23}$</td>
<td>1.8-4.9</td>
</tr>
<tr>
<td>^{100}Mo</td>
<td>NEMO 3</td>
<td>9.6</td>
<td>3034</td>
<td>95-99</td>
<td>tracking</td>
<td>$>4.6 \times 10^{23}$</td>
<td>.7-2.8</td>
</tr>
<tr>
<td>^{116}Cd</td>
<td>Solotvina</td>
<td>7.5</td>
<td>3034</td>
<td>83</td>
<td>scintillator</td>
<td>$>1.7 \times 10^{23}$</td>
<td>1.7 - ?</td>
</tr>
<tr>
<td>^{128}Te</td>
<td>Bernatovitz</td>
<td>34</td>
<td>2529</td>
<td></td>
<td>geochem</td>
<td>$>7.7 \times 10^{24}$</td>
<td>1-4</td>
</tr>
<tr>
<td>^{130}Te</td>
<td>Cuoricino</td>
<td>33.8</td>
<td>2529</td>
<td></td>
<td>bolometric</td>
<td>$>2 \times 10^{24}$</td>
<td>.2-1.</td>
</tr>
<tr>
<td>^{136}Xe</td>
<td>DAMA</td>
<td>8.9</td>
<td>2476</td>
<td>69</td>
<td>scintillator</td>
<td>$>1.2 \times 10^{24}$</td>
<td>1.1 -2.9</td>
</tr>
<tr>
<td>^{150}Nd</td>
<td>Irvine</td>
<td>5.6</td>
<td>3367</td>
<td>91</td>
<td>tracking</td>
<td>$>1.2 \times 10^{21}$</td>
<td>3 - ?</td>
</tr>
</tbody>
</table>

E.Fiorini - NOVE 2006
How to improve by one order of magnitude the sensitivity on the neutrino mass?

\[m_{ee}^2 \propto T_{1/2}^{0\nu} \propto a \sqrt{\frac{M \cdot t}{B \cdot \Delta E}} \]

4 orders of magnitude on \(\frac{M \cdot t}{B \cdot \Delta E} \) are needed (!!!)

The CUORE way:

- Factor 20 in mass (\(\sim 1 \) ton) \(\Rightarrow \) Money
- Factor 20 in useful running time (10 years) \(\Rightarrow \) Longevity
- Factor 20 in background rate \(\Rightarrow \) Skill
The **CUORE** project
(approved by the S.C. of Gran Sasso Laboratory and by INFN)

CUORE is an array of 988 bolometers grouped in 19 columns with 13 floors of 4 crystals

\[
750 \text{ kg TeO}_2 \Rightarrow 600 \text{ kg Te} \\
\Rightarrow 203 \text{ kg } ^{130}\text{Te}
\]

Crystals are separated by a few mm, only, with little material among them
RAD tests

An array of **8 detectors cleaned** with **ultrapure materials and procedures**

Copper
- Etching
- Electro polishing
- Passivation procedure

Crystals
- Crystal etching (Nitric acid)
- Lapping with clean powder (2µ SiO₂)
RAD tests results

• Reduction of a factor ~ 4 on crystal surface contaminations
• Reduction of a factor ~ 2 on copper surface contaminations
» new tests are ongoing in GranSasso
IONIZATION

- **goal**: analyse HM evidence in a short time using existing ^{76}Ge enriched detectors (HM, Igex)
- approach similar to GENIUS but less LN2
 - naked Ge crystals in LN2 or LAr
- more compact than GENIUS
 - 1.5 m LN2(LAr) + 10 cm Pb + 2 m water
 - 2-3 orders of magnitude better bkg than present Status-of-the-Art
 - active shielding with LAr scintillation
- 3 phases experiment
- **Phase I**:
 - radioactivity tests
 - ≈ 20 kg ^{76}Ge from HM and Igex
 - expected bkg 0.01 c/keV/kg/y (intrinsic)
 - check at 5σ HM evidence
 - 15 kg\timesy 6 ± 1 $\beta\beta$ events on 0.5 bkg events
- **Phase II**:
 - add new enriched segmented detectors with special care for activation
 - expected background ≈ 0.001 c/keV/kg/y
 - 2×10^{26} y with 100 kg\timesy
 - $<m> = 0.09 \div 0.29$ eV
- **Phase III**: 0.01 eV with 1 ton Ge
 - worldwide collaboration

- Approved by LNGS S.C.
 - site: Hall A northern wing
- funded 40 kg enriched ^{76}Ge
 - phase II
- aggressive time schedule
60Co background spectrum

![Graph showing 60Co background spectrum with energy (MeV) on the x-axis and counts/keV on the y-axis. The graph includes peaks at different energies labeled with γ_1, γ_2, and $\beta\beta$. The QMC simulation is also indicated.]
60Co: suppression by segmentation

Illustration:
Simple 7-fold segmentation

$N_{hit} = 3$

$N_{seg} = 1$

~ 10 (7 seg.)
60Co: suppression by Lar-Ge anticoincidence

Liquid Argon

MC simulation

LAr anticoinc.

~ 100

~100
LIETEKE HITRIN. VEENCE. FEBRUARY 10. 2006

ANTI-NEUTRINOS - DIRAC OR MAJORIZATION
Next generation experiments

<table>
<thead>
<tr>
<th>Name</th>
<th>%</th>
<th>Q</th>
<th>% E</th>
<th>B c/y</th>
<th>T (year)</th>
<th>Tech</th>
<th><m> meV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUORE</td>
<td>34</td>
<td>2533</td>
<td>90</td>
<td>3.5</td>
<td>1.8x10^{27}</td>
<td>Bolometric</td>
<td>9-57</td>
</tr>
<tr>
<td>GERDA</td>
<td>7.8</td>
<td>2039</td>
<td>90</td>
<td>3.85</td>
<td>2x10^{27}</td>
<td>Ionization</td>
<td>29-94</td>
</tr>
<tr>
<td>Majorana</td>
<td>7.8</td>
<td>2039</td>
<td>90</td>
<td>.6</td>
<td>4x10^{27}</td>
<td>Ionization</td>
<td>21-67</td>
</tr>
<tr>
<td>GENIUS</td>
<td>7.8</td>
<td>2039</td>
<td>90</td>
<td>.4</td>
<td>1x10^{28}</td>
<td>Ionization</td>
<td>13-42</td>
</tr>
<tr>
<td>Supernemo</td>
<td>8.7</td>
<td>2995</td>
<td>90</td>
<td>1</td>
<td>210^{26}</td>
<td>Tracking</td>
<td>54-167</td>
</tr>
<tr>
<td>EXO</td>
<td>8.9</td>
<td>2476</td>
<td>65</td>
<td>.55</td>
<td>1.3x10^{28}</td>
<td>Tracking</td>
<td>12-31</td>
</tr>
<tr>
<td>Moon-3</td>
<td>9.6</td>
<td>3034</td>
<td>85</td>
<td>3.8</td>
<td>1.7x10^{27}</td>
<td>Tracking</td>
<td>13-48</td>
</tr>
<tr>
<td>DCBA-2</td>
<td>5.6</td>
<td>3367</td>
<td>80</td>
<td>1</td>
<td>1x10^{26}</td>
<td>Tracking</td>
<td>16-22</td>
</tr>
<tr>
<td>Candles</td>
<td>.19</td>
<td>4271</td>
<td>-</td>
<td>.35</td>
<td>3x10^{27}</td>
<td>Scintillation</td>
<td>29-54</td>
</tr>
<tr>
<td>CARVEL</td>
<td>.19</td>
<td>4271</td>
<td>-</td>
<td>3x10^{27}</td>
<td>Scintillation</td>
<td>50-94</td>
<td></td>
</tr>
<tr>
<td>GSO</td>
<td>22</td>
<td>1730</td>
<td>-</td>
<td>200</td>
<td>1x10^{26}</td>
<td>Scintillation</td>
<td>65-?</td>
</tr>
<tr>
<td>COBRA</td>
<td>7.5</td>
<td>2805</td>
<td></td>
<td></td>
<td></td>
<td>Ionization</td>
<td></td>
</tr>
<tr>
<td>SNOLAB+</td>
<td>5.6</td>
<td>3367</td>
<td></td>
<td></td>
<td></td>
<td>Scintillation</td>
<td></td>
</tr>
</tbody>
</table>

E.Fiorini - NOVE 2006