
Visible progress from 2006 (dashed) to 2008 (solid)

Gianluigi Fogli

2008 parameter summary at 2σ level (95 % CL)

$$\begin{aligned} \delta m^2 / eV^2 &= 2.38 \pm 0.27 \\ |\Delta m^2| / eV^2 &= 7.66 \pm 0.35 \\ \sin^2 \theta_{12} &= 0.326 \stackrel{+0.05}{_{-0.04}} \\ \sin^2 \theta_{23} &= 0.45 \stackrel{+0.16}{_{-0.09}} \\ \sin^2 \theta_{13} &< 3.2 \times 10^{-2} \end{aligned}$$

(Addendum to hep-ph/0608060, in preparation)

This is what we know.

Gianluigi Fogli

Concerning

What we would like to know

(Hierarchy (normal or inverted) CP in the v sector θ_{13} mixing

oscillation parameter bounds on ϑ_{13}

Some aspect is currently "hidden" below 1σ C.L.

3 A recent example: sigma 2 slight preference for number of $\sin^2\theta_{13} \sim 0.01$ from the combination of solar +reactor 2008 data (green curve in the figure) 0

Gianluigi Fogli

 \cap

0.02

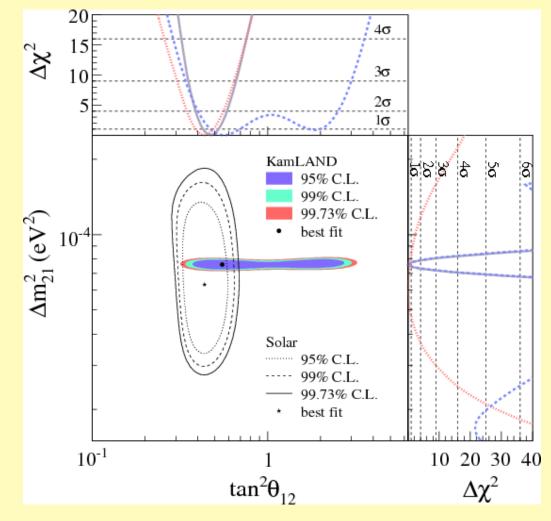
0.04

 $\sin^2 \vartheta_{13}$

0.06

0.08

 3ν

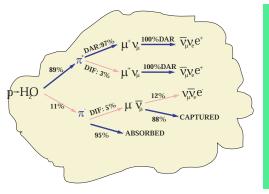

0.1

Reason:

Slight disagreement between

- Solar data (SNO dominated)
- KamLAND data (at $\theta_{13} = 0$)

when the two best-fits are compared in the usual plane $(m_{12}^2, tan^2\theta_{12})$


[figure taken from the official Kamland site (2008)]

LSND experiment at the Los Alamos Meson Physics Facility (LAMPF)

Neutrino Source High intensity (1mA) low energy (800 MeV) p beam into stop target

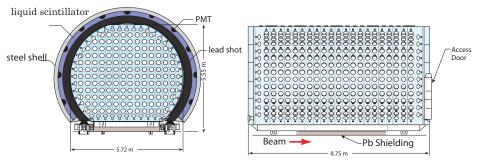
Look for $\overline{\nu}_{\mu} \to \overline{\nu}_e~$ oscillation from decay at rest (DAR) neutrino flux and for

 $\nu_{\mu} \rightarrow \nu_{e}$ oscillation from decay in flight (DIF) neutrino flux.

- $\overline{\nu}_e$ flux is $\overline{\nu}_e / \overline{\nu}_\mu$ (DAR) = 7.8 $\cdot 10^{-4}$
- Oscillated $\overline{\nu}_e$ events have a maximum energy of 52.8 MeV.
- No electron from ν_e above 36 MeV ($\nu_e^{12}C \rightarrow e^{-12}N$)
- No electron with a correlated γ above 20 MeV $(\nu_e^{12}C \rightarrow e^- n^{11}N)$

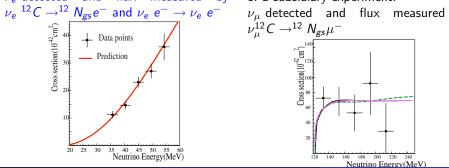
DAR FLUXES

DIF FLUXES



Liquid Scintillator Neutrino Detector

167t of Dilute Mineral Oil

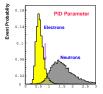

Cerenkov light (n=1.47): threshold+direction Scintillation : energy Cerenkov/scintillation: particle identification central detector: 1220x8" PMT (25% surface coverage) mineral oil (CH2) doped with 0.031 g/l of b-PBD .

veto detector: 292x8" PMT, passive shield: ~2 Kg/cm2

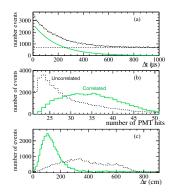
DATA TAKING

[YEAR	COULOMBS				
	1993	1787				
	1994	5904	First DAR paper: "Candidate events" (PRL 75(1995)2650)			
	1995	7081	Second DAR paper: "Evidence for", (Ph.Rev.C 54(1996)268			
			DIF paper: " Results on", (PRL 81(1998)1774 and Ph.Rev.C			
	1996	3790	Water tank substituded with high Z target.			
	1997	7181	Preliminary results at Neutrino 1998			
	1998	3154	End of data taking 21 dec 1998			
$\overline{\nu}_{\mu}$ flux known at 7% through the results						
1	ν_e detect	ed and flux	measured by of a subsidiary experiment.			

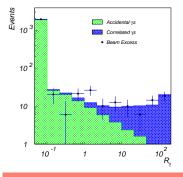
Mauro Mezzetto, INFN Padova ()


Neutrini da Acceleratori

240


by

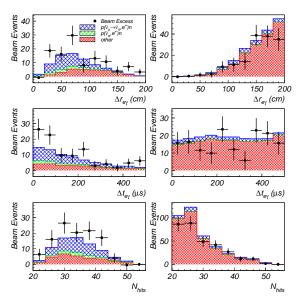
DAR OSCILLATION SEARCH


 $\begin{array}{c} \underset{\overline{\nu_e} \ p \rightarrow e^+ n \\ n + p \xrightarrow[\tau \simeq 186 \ \mu s]}{ \substack{\mu s}} d + \gamma (2.2 \ \text{MeV}) \\ \end{array} \\ \begin{array}{c} \underset{delayed \ correlated \ photon. \end{array}$

- Particle identification through position, direction, #PMT (e⁻ calibration through Michel e⁻ from CR μ decays)
- OR veto through veto on detector activity before and after the trigger.
- Correlated γ through likelihood function R (built with CR muons and/or MC)
- Energy range: $20 \le E_e \le 60$ or $36 \le E_e \le 60$ MeV (golden sample).
- Overall $\overline{\nu}_e$ detection efficiency: 22%

EXCESS OF $\overline{\nu_e}$ EVENTS

BACKGROUNDS

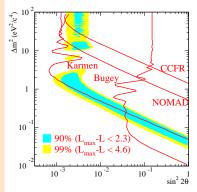

- Osmic Rays. Measured in beam off data (beam-off/beam-on≃ 13, → good statistical accuracy for background subtraction).
- Beam interactions with a random (measured)
- Genuine $\overline{\nu}_e$ and $\overline{\nu}_\mu$ with a correlated γ . Studied via MC simulations.

Selection	Beam-On Events	Beam-Off Background	ν Background	Event Excess	Probability	
$R_{\gamma} > 1$	205	106.8 ± 2.5	39.2 ± 3.1	$59.0 \pm 14.5 \pm 3.1$	7.8×10^{-6}	
$R_{\gamma} > 10$	86	36.9 ± 1.5	16.9 ± 2.3	$32.2\pm9.4\pm2.3$	1.1×10^{-4}	
$R_{\gamma} > 100$	27	8.3 ± 0.7	5.4 ± 1.0	$13.3 \pm 5.2 \pm 1.0$	1.8×10^{-3}	

Events with $20 \le E_e \le 60$ MeV, $R_{\gamma} > 10$:

Analysis	Excess Events	Oscillation Probability		
Present Analysis (1993-1998)	$87.9 \pm 22.4 \pm 6.0$	$(0.264 \pm 0.067 \pm 0.045)\%$		
Previous Analysis (1993-1995)	$51.0^{+20.2}_{-19.5}\pm 8.0$	$(0.31\pm0.12\pm0.05)\%$		

Excess events fit oscillated event characteristics:



While don't fit backgrounds:

- Fit the excess with the μ⁻ background: it must be multiplied by 8.6 and χ² is 2.2 units worse than oscillation fit
- π⁻ DIF backgrounds studied with a special trigger during 1995, in order to increase sensitivity to muons associated to small activity: it resulted compatible with the MC predictions.

SIGNAL PLOT

- Global $\overline{\nu}_{\mu} \overline{\nu}_{e}$ and $\nu_{\mu} \nu_{e}$ analysis (DAR + DIF). 5697 candidate events with 20 < E_{ν} < 200 MeV.
- 3600 bins in 4 variables: the energy, the likelihood R_{γ} , the angle respect the beam direction $(\cos \theta_b)$ and the path length L
- Systematics included: neutrino flux \times detection efficiency = 10%.
- Bidimensional $(sin^2(2\theta), \Delta m^2)$ grid, selecting $\Delta \chi^2 = 2.6(90\%)$ and 4.5(99%) above the minimum.
- The other exclusion curves in the plot are built with several different statistical methods!.

KARMEN EXPERIMENT

Performed at ISIS neutron spallation facility at RAL.

The detector (56 t), is at 17 m, 90⁰, from the beam stop. Beam current is 0.2 mA. The time structure of the beam permits a separation between neutrinos from μ^+ DAR and those from π decay (both DAR and DIF).

KARMEN 1: 1990-1995, 9120 Coulombs. Seen 171 events, expected 140 from cosmic rays and beam backgrounds.

Beam excess = 31 ± 17 (2.4 σ), delayed event seen but prompt positron do not exhibit time and energy distribution from oscillations. A lower limit on oscillation probability: $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) < 4.25 \cdot 10^{-3}$ (90%*CL*) was set. Also performed a search for $\mu \rightarrow \mu$ oscillation with a 90% *CL* limit of $2 \cdot 10^{-2}$

Also performed a search for $\nu_\mu \to \nu_e$ oscillation, with a 90% CL limit of $2\cdot 10^{-2}$ on the probability.

UPGRADE (KARMEN 2): new 300 m^2 active veto layer surrounding the iron blockhouse (4λ)

- throughgoing or stopping muons can be off-line vetoed
- Cosmic background suppression reduced by a factor 43.

KARMEN DETECTOR

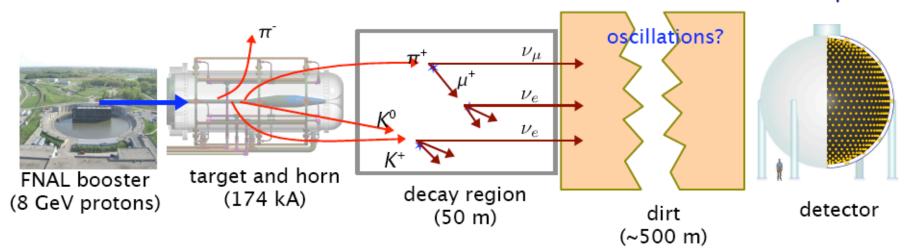
56t liquid scintillator calorimeter 96% active volume OUTER VETO 1 **NE110** PASSIVE SHIELD 20 cm **INNER VETO** 96 SEGMENTED 16x32 CENTRAL DETECTOR " PHOTOMULTIPLIER ACRYLIC GLASS PM PM Gd₂O₂ PAPER + AIR GAP S S COLORD COLORD COLORD 3.2m x 5.9m x 3.5m σt =0.4ns $\Delta E/E = \frac{11.5\%}{\sqrt{E(MeV)}} (<=>80 \text{ pe/MeV})$ $\sigma x = 6.0 \text{cm}$

Mauro Mezzetto, INFN Padova ()

KARMEN EXPERIMENT

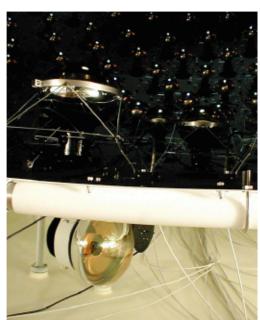
Performed at ISIS neutron spallation facility at RAL.

The detector (56 t), is at 17 m, 90^{0} , from the beam stop. Beam current is 0.2 mA.


The time structure of the beam permits a separation between neutrinos from μ^+ DAR and those from π decay (both DAR and DIF).

KARMEN 1: 1990-1995, 9120 Coulombs. Seen 171 events, expected 140 from cosmic rays and beam backgrounds. Beam excess = $31 \pm 17 (2.4\sigma)$, delayed event seen but prompt positron do not exhibit time and energy distribution from oscillations. A lower limit on oscillation probability: $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) < 4.25 \cdot 10^{-3} (90\% CL)$ was set. Also performed a search for $\nu_{\mu} \rightarrow \nu_{e}$ oscillation, with a 90% CL limit of $2 \cdot 10^{-2}$ on the probability.

UPGRADE (KARMEN 2): new 300 m^2 active veto layer surrounding the iron blockhouse (4 λ)


- throughgoing or stopping muons can be off-line vetoed
- Cosmic background suppression reduced by a factor 43.

The MiniBooNE design strategy...must make v_{μ}

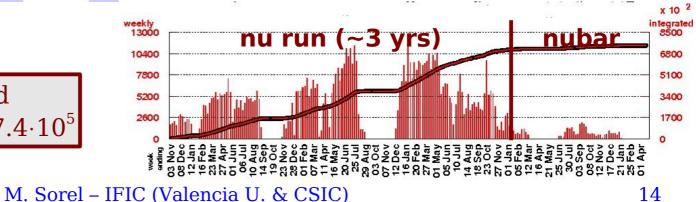
- Start with 8 GeV proton beam from FNAL Booster
- Add a 174 kA pulsed horn to gain a needed x 6
- Requires running v (not anti-v) to get flux
- Pions decay to v with E_v in the 0.8 GeV range
- Place detector to preserve LSND L/E: MiniBooNE: (0.5 km) / (0.8 GeV) LSND: (0.03 km) / (0.05 GeV)
- 5.58×10^{20} P.O.T. total; up to 5×10^{12} p/pulse at up to 4 Hz

$$v_{\mu} = 93.5\%, v_{e} = 0.5\%, \overline{v}_{\mu} = 6\%$$

Neutrino Detector

Number of accumulated neutrino interactions: $7.4 \cdot 10^5$

 12 m in diameter sphere filled with 800 t of undoped mineral oil


Light tight inner region with 1280,
 20 cm diam., PMTs (10% coverage)

240 PMTs in veto region (>99.9% veto efficiency)

Neutrino interactions in oil produce:

- Prompt, ring-distributed, Cerenkov light
- Delayed, isotropic, scintillation light

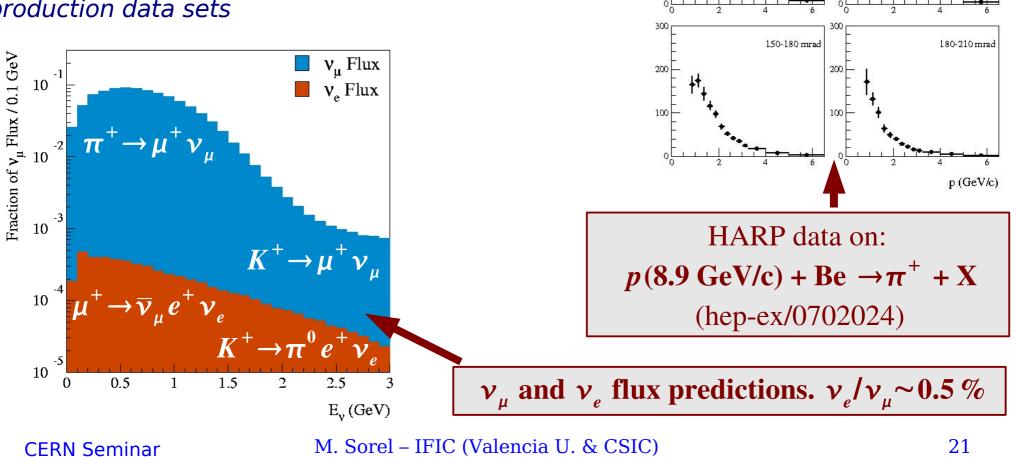
 Light transmission affected by: fluorescence, scattering, absorption (>20m for >400 nm light)

CERN Seminar

Neutrino Interactions at MiniBooNE

• Several interaction channels contribute in \sim 1 GeV neutrino energy regime

CERN Seminar


M. Sorel – IFIC (Valencia U. & CSIC)

Modeling Neutrino Fluxes

GEANT4 beamline description, simulating:

- Primary protons, geometry, materials and horn field
- Interactions, focusing, meson and muon decays

 Pion/kaon production data on beryllium is the most important external physics input to the simulation
 -> parametrized according to relevant hadron production data sets

 $d^2 \sigma^{\pi} / (dp d\Omega) (mb / (GeV/c sr))$

200

100

200

100

30-60 mrad

90-120 mrad

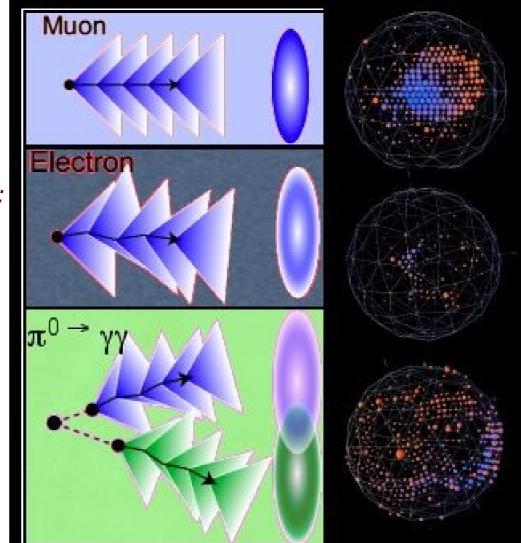
200

60-90 mrad

120-150 mrad

Particles to Identify in Appearance Search

Muons (background):

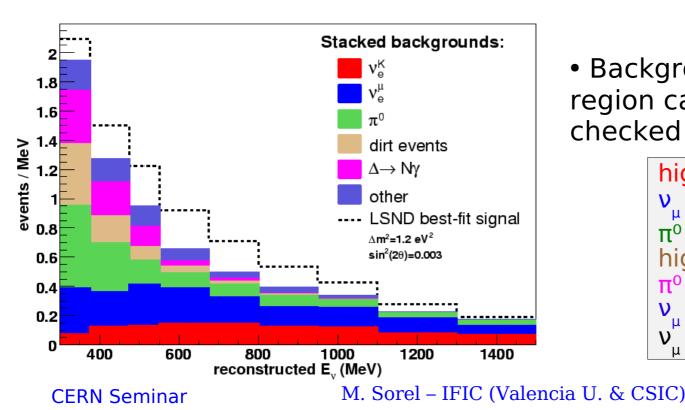

- Iong tracks
- sharp Cherenkov ring
- ~80% with decay electron tag

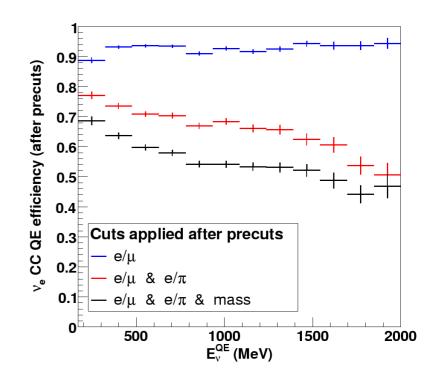
Electrons (signal and intrinsic background):

- short tracks
- fuzzy Cherenkov ring
- single subevent

 $\pi^{\circ} \rightarrow \gamma \gamma$ decays (background): • disconnected short tracks

- typically two fuzzy Cherenkov rings
- single subevent




Signal Efficiency and Background Composition

• Signal efficiency: Single subevent,hit-level, fiducial volume, energy threshold cuts + $Log(L_e/L_u)$

+ $Log(L_e/L_{\pi})$

+ invariant mass cuts

• Background events in signal region can be constrained or checked with other samples:

high energy events v_{μ} CC QE π^{0} high radius events π^{0} v_{μ} CC QE v_{μ}^{μ} CC QE

28

Electron Neutrino Box Opening Procedure

Step 1: perform fit of E_v distribution of electron candidate events in the $300 < E_v < 3000$ MeV energy range to oscillation hypothesis, where best-fit oscillation signal added to background prediction is unknown. Disclose X^2 values from data/MC comparisons of several diagnostic variables

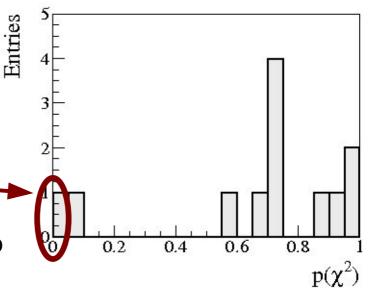
Step 2: disclose histograms for data/MC comparisons of same diagnostic variables

Step 3: disclose X^2 value for E_v data/MC comparison over oscillation fit range, still retaining blindness to oscillation signal component

Step 4: disclose full information on electron candidate events and oscillation fit results

Progress in a step-wise fashion, with ability to iterate if necessary

 All event selection and oscillation fit procedures were determined before full information on electron candidate events and oscillation fit results was disclosed

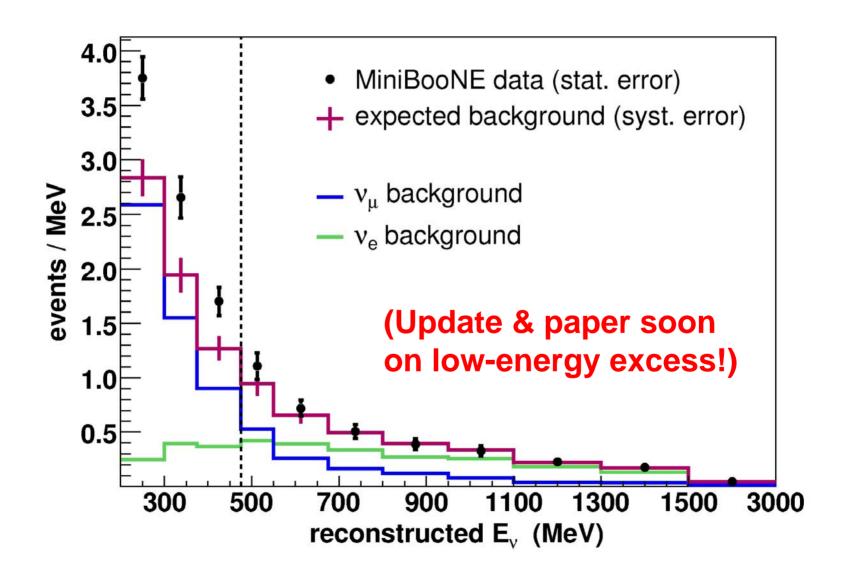

Box Opening Step 1: First Try

• X^2 probability for data/MC comparisons on 12 diagnostic variables:

event/track position, direction, visible energy, and PID quantities

• Comparisons looked good except event visible energy: $p(X^2>X^2(obs)) = 1\%$

 Indicates poor data/MC agreement beyond ability of 2-neutrino, appearance-only oscillation model to handle

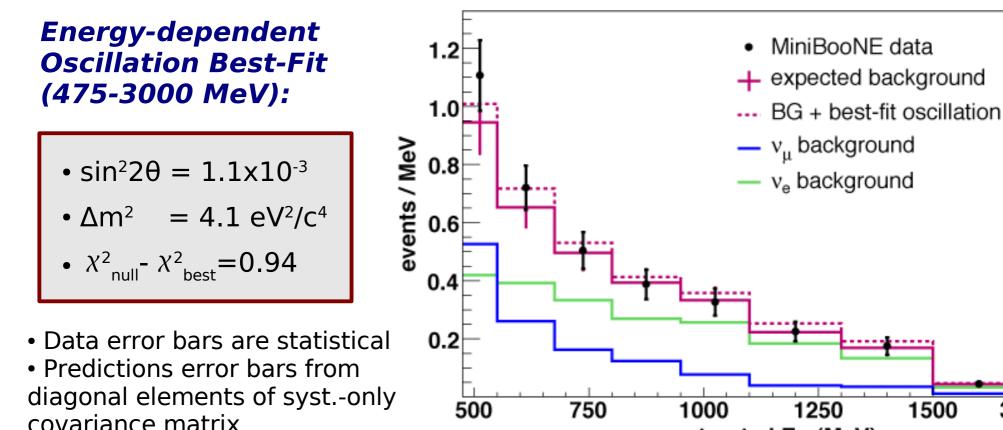


- Triggered further investigations of background estimates and associated uncertainties, using "sideband" samples
 we found no evidence of a problem
- However, knowing that:
 - backgrounds predicted to rise at low energy
 - studies focused suspicions in low-energy region
 - choice has negligible impact on oscillation sensitivity

-> we decided to look for oscillations (and diagnostic X^2) in the reduced (475 < E_v < 3000 MeV) range, and report events over full (300 < E_v < 3000 MeV) one

MiniBooNE observes a low-energy excess!

A. A. Aguilar-Arevalo et al., PRL98, 231801 (2007);



Oscillation Search Results

Counting experiment (475-1250 MeV):

- Observe 380 events, predict 358±19±35 events
- 0.55 σ excess over no-oscillations background

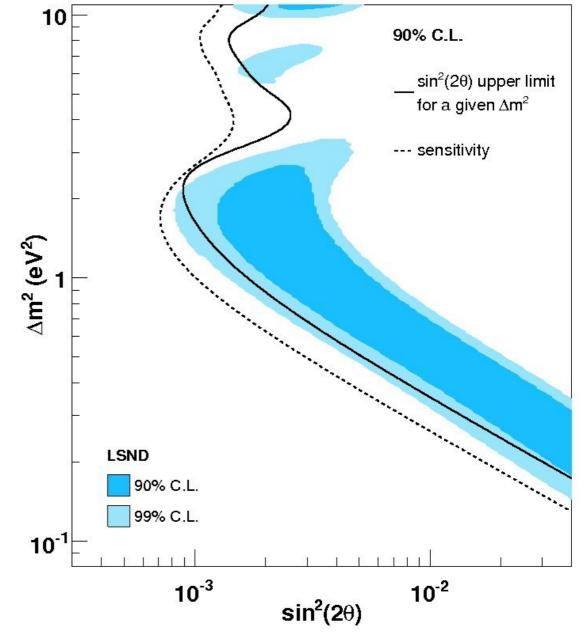
No evidence for oscillations

CERN Seminar

M. Sorel – IFIC (Valencia U. & CSIC)

3000

1500

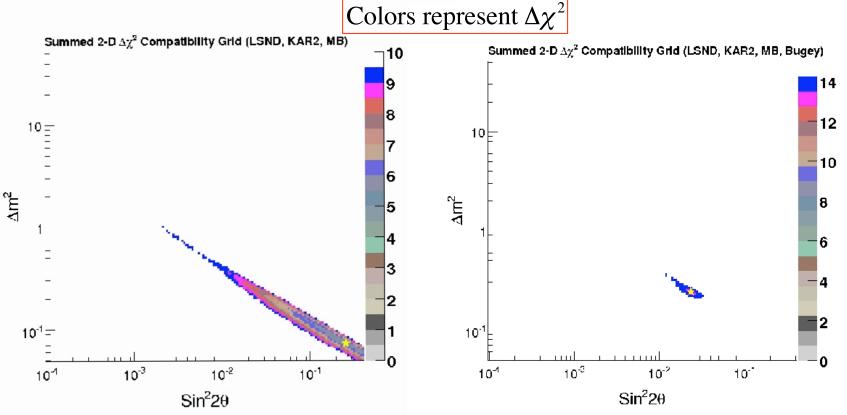

reconstructed E. (MeV)

Oscillation Parameters Exclusion

• No overlap in 90% CL allowed LSND and MiniBooNE regions

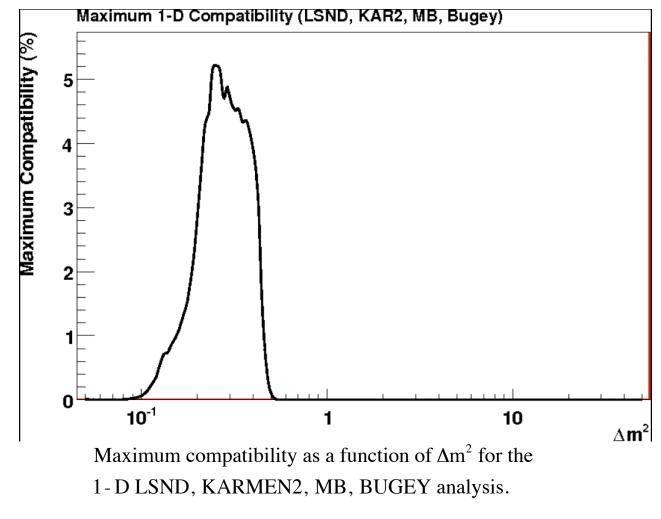
 MiniBooNE excludes two neutrino appearance-only oscillations as the explanation of the LSND anomaly at ~98% CL

• Any interpetation of the LSND anomaly that would produce a significant excess for E_{v} >475 MeV at MiniBooNE is also ruled out



M. Sorel – IFIC (Valencia U. & CSIC)

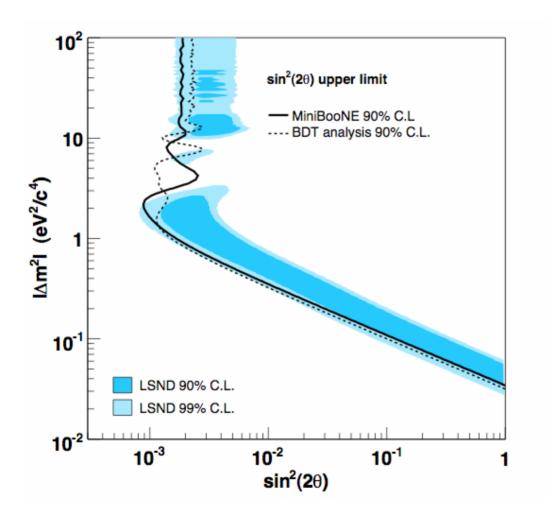
Global Fit Results (H. Ray)


- Combine results from several experiments--LSND, MiniBooNE, Karmen and Bugey
- Convert each to a chisq. However, only Delta chisq is available.
- Do fits with this. Omits effect of goodness-offit of individual experiments
- 2-D fits--both oscillation parameters fitted
- 1-D fits-- only sinsq theta fit. For each deltamsq asks: " If this is the true deltamsq, what is the compatibility?"

Global Fit Results-2D Fits

- The star is the point of maximum compatibility
- LSND, KARMEN2, MB + BUGEY

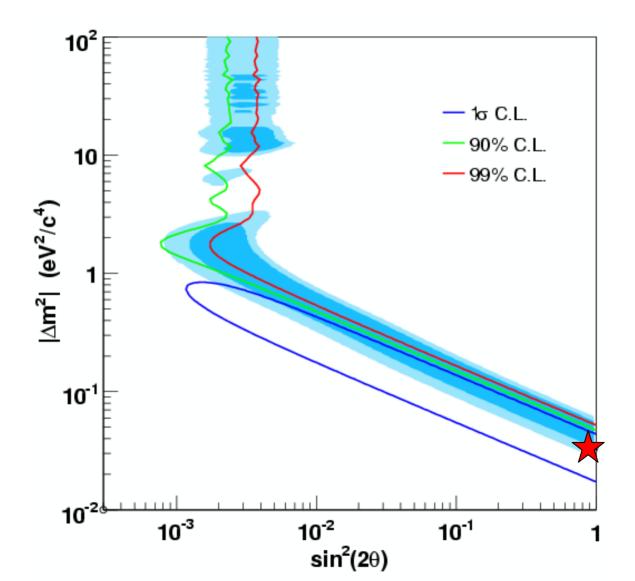
Global Fits Results--1D


Byron Roe

Global Fits to Experiments

LSND	KARMEN2	MB	Bugey	Max Compat (%)	Δm^2	$\sin^2 2\theta$
Х	Х	Х		25.36	0.072	0.256
Х	Х	Х	Х	3.94	0.242	0.023
	Х	Х		73.44	0.052	0.147
	Х	Х	Х	27.37	0.221	0.012
Х		Х		16.00	0.072	0.256
Х		Х	Х	2.14	0.253	0.023
Х	Х			32.21	0.066	0.4

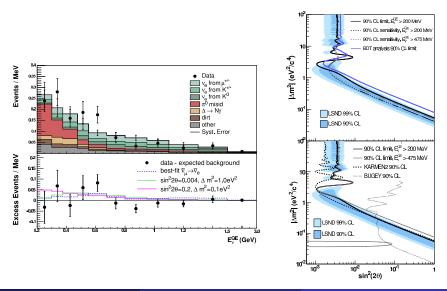
Oscillation Limit


Energy fit: $475 < E_v^{QE} < 3000 \text{ MeV}$

Simple 2-neutrino oscillations excluded at 98% C.L.

Allowed Region

Energy Fit : $300 < E_v^{QE} < 3000 \text{ MeV}$


Possible Explanations for the Low-Energy Excess

- Anomaly Mediated Neutrino-Photon Interactions at Finite Baryon Density: Jeffrey A. Harvey, Christopher T. Hill, & Richard J. Hill, arXiv:0708.1281
- CP-Violation 3+2 Model: Maltoni & Schwetz, arXiv:0705.0107
- Extra Dimensions 3+1 Model: Pas, Pakvasa, & Weiler, Phys. Rev. D72 (2005) 095017
- Lorentz Violation: Katori, Kostelecky, & Tayloe, Phys. Rev. D74 (2006) 105009
- CPT Violation 3+1 Model: Barger, Marfatia, & Whisnant, Phys. Lett. B576 (2003) 303
- New Gauge Boson with Sterile Neutrinos: Ann E. Nelson & Jonathan Walsh, arXiv:0711.1363

Other data sets (NuMI, antineutrino, SciBooNE) may provide an explanation!

MiniBooNE Antineutrino Run

arXiv:0904.1958, based on $3.39 \times 10^{20} pot$

Mauro Mezzetto, INFN Padova ()