Neutrini Solari

Formazione stellare: cluster di gas primordiale (71% H₂, 27.1% He⁴, 1.96% z > 2, in massa) collassa per gravita' \Rightarrow aumento della densitá del nucleo, temperatura \Rightarrow ignizione di reazioni di fusione nucleare. Radiazione + pressione cinetica bilanciano la gravita' \rightarrow equilibrio idrostatico.

La principale reazione di fusione responsabile del rilascio di energia del sole:

$$4p \rightarrow He^4 + 2e^+ + 2\nu_e$$

con rilascio di energia $Q = (4m_p - m_{He^4} - 2m_e)c^2 = 24.68 MeV$ Energia prodotta sotto forma di calore: La luminositá del Sole é $L_{\odot} = 3.846 \cdot 10^{26}$ watt

 $\Rightarrow \text{II numero di neutrini emessi dal Sole al secondo:} N(\nu_e) = 2 \frac{L_{\odot}}{1.6 \cdot 10^{-13} \times 26.1} \simeq 1.8 \cdot 10^{38} \nu_e / s$ La distanza media Sole-Terra é $1.496 \cdot 10^{11} \text{ m} \Rightarrow \text{Flusso di } \nu_e$ solari sulla terra: $\simeq 6.4 \cdot 10^{10} \nu_e / cm^2 \cdot s$ Frequenza di interazioni rivelabili: ∇ (Π = 2) = $(0 - 1) - 10^{10} - 2 - 1 - 10^{-46} - 2$

$$\sum (\text{Flusso}) \times (\text{Sezione d'urto}) \sim 10^{10} cm^{-2} s^{-1} \times 10^{-46} cm^2$$

Unitá di misura del flusso di interazioni di neutrini

 $1 \text{ SNU} = 10^{-36}$ Interazioni per atomo per secondo

Standard Solar Model (SSM)

ASSUNZIONI:

- Equilibrio idrostatico
- Energia prodotta da processi di fusione
- Equilibrio termico (energia prodotta = luminosita')
- Trasporto di energia nel sole dominato dalla radiazione

IL METODO:

- Parametri iniziali (t=0, la composizione iniziale uguale alla composizione attuale alla superfice)
- Evoluzione a $t = 4.4 \cdot 10^9$ anni (oggi)
- Confronta i parametri predetti e misurati
- Se necessario modifica i parametri iniziali e reitera

PARAMETRI D'INGRESSO:

- Abbondanze iniziali di elio e metalli, Y_{in} , Z_{in}
- Opacitá in funzione vs. raggio
- Sezioni d'urto delle reazioni di fusione

PROPRIETÁ ATTUALI:

- $R_{\odot} = 6.96 \cdot 10^5 \text{ km}$
- $L_{\odot} = 3.846 \cdot 10^{26} W$
- $M_{\odot} = 1.989 \cdot 10^{30} \ kg$
- $T_C = 15.6 \cdot 10^6 \circ K$
- $T_S = 5773 \ ^{\circ}K$
- Massa di idrogeno: 34.1% (71% a t=0)
- Massa di elio: 63.9% (27.1% a t=0)

Lo "standard solar model" é in evoluzione da piú di 30 anni, e diversi gruppi lo stanno sviluppando indipendentemente. Il pioniere di questa attivitá é John Bahcall, e suo l'attuale modello di riferimento: BP00.

Nel frattempo le sezioni d'urto coinvolte sono state oggetto di continue revisioni:

ω

Predizioni dello SSM (Standard Solar Model) sul flusso di neutrini

I neutrini dei vari cicli vengono prodotti in zone diverse del sole:

e hanno dipendenze molto diverse dalla temperatura T_C del nucleo del sole (questo perché ci sono potenziali coulombiani da superare):

• $\nu_{PP} \propto T_C^{0.8}$ • $\nu_B \propto T_C^{-18}$ • $\nu_{Be} \propto T_C^8$

Gli unici neutrini veramente sotto controllo sono quelli della reazione principale pp, direttamente correlati a L_{\odot}

NOTA BENE:

- ν_e raggiungono la terra circa 500 s dopo la loro produzione

Lo SSM assume la stabilitá del sole su un periodo di 10^6 anni \Rightarrow Questo non é un probema: il sole e' una stella "della sequenza principale" ed é stabile su periodi di 10^9 anni (cosí garantiscono gli astronomi).

Eliosismologia

Osservazione di oscillazioni sismiche nel Sole Misura delle frequenze di oscillazione.

Si misura la velocitá di propagazione del suono all'interno del sole:

$$v_s = v(R) \propto \sqrt{\frac{T}{\mu}} \quad \begin{cases} \mathsf{R}: \text{distanza dal centro del sole} \\ \mathsf{T}: \text{temperatura locale} \\ \mu: \text{peso molecolare medio locale} \end{cases}$$

Aggiunge ulteriori proprietá da verificare e corrobora la credibilitá delle previsioni dello SSM:

- Raggio della zona convettiva: R_b
- Velocitá del suono al confine fra la zona convettiva e la zona radiativa, c_b
- Abbondanza di elio nella fotosfera, Y_{ph}

ი

Esperimenti sui neutrini solari

Gli esperimenti finora condotti confrontano il flusso di neutrini predetto dallo SSM con il flusso di neutrini misurato sperimentalmente.

Si possono suddividere in due categorie principali:

Esperimenti Radiochimici: confrontano gli spettri integrali, integrano gli eventi raccolti per qualche mese. Possono portare le soglie di rivelazione a valori molto bassi, fino a poter rivelare i neutrini prodotti nel ciclo principale pp.

Esperimenti in tempo reale: producono uno spettro differenziale e per l'appunto sono in tempo reale. Misurano le singole propriet delle interazioni di neutrino (energia, direzione). Sono finora caratterizzati da soglie relativamente alte ($> 5.0 \ MeV$) e quindi sono sensibili solo ai neutrini prodotti dal ciclo del Boro e hep.

Tutti gli esperimenti richiedono un bassissimo livello di rumore a bassa energia \Rightarrow devono essere condotti "deep underground".

In esperimenti di flusso assoluto é indispensabile controllare TUTTE le efficienze, i fondi e i tempi morti

Esperimento Homestake (R. Davis & coll.)

Nella miniera d'oro Homestake, Sud Dakota, USA.

L'esperimento é in corso dal 1967. (Pubblicazioni con referee fino ad oggi \Rightarrow <u>2!</u>)

Misura il processo $\nu_e + Cl^{37} \rightarrow e^- + Ar^{37}$ con soglia $E_{\nu} = 814 KeV \rightarrow$ sensibile ai neutrini del ciclo del berillio, boro ed hep.

Rivela gli atomi di Ar^{37} prodotti in una tanica di $390 m^3$ riempita con C_2Cl_4 : 520 ton di Cl, 24% di Cl^{37} . SSM predice ~ 1.5 atomi di Ar^{37} prodotti al giorno.

- Ogni qualche mese si estrae l'Argon dalla tanica flussando Azoto →dopo aver separato l'Azoto si riempiono delle camere proporzionali
- Vengono rivelati i raggi x o gli elettroni Auger prodotti dalla reazione di cattura-k $e^- + Ar^{37} \rightarrow \nu + Cl^{*37}$ ($\tau_{1/2} = 34$ giorni). La distribuzione temporale dei decadimenti é la firma della produzione di Ar^{37} .

Errori sistematici:

- Efficienza di estrazione: 1.3%. Misurato iniettando una quantitá nota di isotopi radioattivi nell'Azoto.
- Efficienza dei contatori: 2.8%. Stimata dalla determinazione del volume effettivo dei contatori e dalla correzione dei conteggi di background.
- Background ambientale: 5%. Da fondo di neutroni nella caverna e dal flusso di muoni atmosferici. Il fondo di neutroni é stato misurato 20 anni fa.

Manca una misura globale dell'efficienza della misura.

Risultati di Homestake

 $R(Cl) = 2.56 \pm 0.16 \,(stat) \pm 0.16 \,(syst) \,SNU \quad \leftrightarrow \quad SSM: \, 7.7^{+1.2}_{-1.0} \,SNU$

Esperimento Gallex-GNO

30.3 ton di gallio sotto forma di soluzione $GaCl_3 - HCl$.

La reazione di neutrino é $\nu_e + Ga^{71} \rightarrow Ge^{71} + e^-$ Soglia: $E_{\nu} = 233 MeV$ sensibile ai neutrini del ciclo pp.

• Ogni \sim 3 settimane gli atomi di ^{71}Ge prodotti dai neutrini (assime agli atomi inattivi di Ge aggiunti alla soluzione all'inizio di ogni run), sotto forma del composto volatile $GeCl_4$, sono estratti dalla soluzione flussando azoto.

• L'azoto viene separato mentre il $GeCl_4$ viene convertito in GeH_4 , mescolato con xenon e introdotto in contatori proporzionali HD-II proportional counter

• Gli atomi di Ge^{71} sono rivelati attraverso i raggi x dal processo $e^- + Ge^{71} \rightarrow Ga^{71} + \nu$. ($\tau_{1/2} = 11.43$ giorni)

La distribuzione temporale dei conteggi e l'energia dei raggi X sono la firma della produzione di Ge^{71}

VERIFICHE SPERIMENTALI

- Ge-carrier: Ogni run é monitorato da circa 1 mg di Ge-carrier. Questa quantitá deve essere ritrovata nel conteggio finale.
- Blank run: Il sole non puó essere spento ma in run di un solo giorno si puó assumere di non avere avuto interazioni di neutrini e misurare il livello di fondo.
- Esperimento As^{71} : é stata iniettata una quantita' nota di As^{71} nella tanica:

$$As^{71} \rightarrow Ge^{71} + e^- + \nu_e \quad (32\%, \tau_{1/2} = 2.72 \text{ giorni})$$

 $e^- + As^{71} \rightarrow Ge^{71} + \nu_e \quad (68\%)$

Possibile solo alla fine dell'eseperimento, l'arsenico poteva contaminare la tank. Risultato: efficienza = $(100 \pm 1)\%$

- Sorgente di Cr^{51} da 1.6 Mci ! ${\rightarrow}e^- + Cr^{51} {\rightarrow} \nu_e ~+ V^{51}$

 $E_{\nu_e} = 0.75 \ MeV$. Il flusso iniziale di ν_e era circa 5 volte il flusso di ν_e solari. Due run \rightarrow risposta del rivelatore: $95 \pm 8\%$.

GNO sará per lungo tempo l'unico esperimento in grado di rivelare i neutrini del ciclo pp.

Ha comunque senso continuare l'esperimento solo se gli errori sistematici verranno ridotti al di sotto degli errori statistici

M. Mezzetto, INFN Padova, Lezioni di Dottorato di Ricerca, Padova, Aprile 2003

Esperimento SAGE (Soviet American Gallium Experiment

Baksan valley - Caucaso - Russia

Molto simile a Gallex, ha preso dati nello stesso periodo. Fino a 57 ton di gallio metallico (liquido sopra i 30°).

16

Progetto (Super)Kamiokande

Miniera Kamioka - Takayama - Giappone.

Esperimento KAMIOKANDE. Operativo dal 1984, inizialmente progettato per studiare il decadimento del protone. É costituito da una vasca sferica riempita da 3000 tonnellate d'acqua (fiduciale=670 ton), equipaggiata con 1071 PMT da 20" (con copertura del 20% della superficie)

KAMIOKANDE II. Dall'inizio del 1986 il rivelatore é migliorato con un veto attivo a 4π , elettronica multi-hit + timing e un sistema potenziato di purificazione dell'acqua. Questo permette di abbassare la soglia di rivelazione a 7 Mev aprendo la possibilitá di rivelare i neutrini solari.

Nel 1987 esplode la supernova SN1987A e l'esperimento ne rileva i neutrini.

Dal 1988 la soglia sugli elettroni é portata a 5.2 MeV.

Esperimento SuperKamiokande. Operativo dal 1 aprile 1996, é una vasca sferica da 50000 ton, con un fiduciale di 22000 ton. La soglia sui neutrini solari é inizialmente a 7.5 MeV ed e' stata progressivamente portata agli attuali 5.0 MeV (settembre 2000).

Progetto K2K Il primo fascio Long Baseline operativo. Usa neutrini prodotti a KeK e SuperKamiokande come far detector. Inizio della presa dati nel 1999.

L'esperimento é lo stato dell'arte attuale nei seguenti campi

- Proton decay.
- Neutrini solari.
- Neutrini atmosferici.

- Neutrini da supernova.
- Neutrini da fasci Long Baseline.

Rivelatore SuperKamiokande

SUPERKAMIOKANDE INSTITUTE FOR COMIC RAY RESEARCH UNIVERSITY OF TURYO

Tank	Dimensioni	$\phi = 39.3 m$, $h = 41.4 m$
	Volume	50 kton
Rivelatore	Spessore	2.6 m ($7.2X_0$ e $4.3\lambda_0$)
Esterno	Volume	18 Kton
	Num. di PMT	302 (top), 308 (bottom), 1275 (barrel)
Rivelatore	Dimensioni	$\phi = 33.8 m, h = 36.2 m$
Interno	Volume	32 kton
	Num. di PMT	1748 (basi), 7650 (lati), 40.4% coverage
Fiduciale	Spessore	2m ($5.5X_0,3.3\lambda_0$) dall'inner wall
	Volume	22 kton

8

Rivelazione di luce Čerenkov

In un mezzo a indice di rifrazione n la velocitá della luce é c/n. Quando una particella carica attraversa un mezzo con velocitá maggiore della velocitá della luce, emette luce Čerenkov . L'energia minima della particella per emettere luce Čerenkov é:

Particella	Soglia Čerenkov		
	(Energia totale in MeV)		
e	0.768		
μ	158.7		
π	209.7		

La luce Čerenkov é emessa in un cono di mezza ampiezza θ nella direzione della traccia:

$$\cos\theta = \frac{1}{n\beta}$$

 $\theta=42^\circ$ per $\beta=1.0$ in acqua.

 $_{\rm N}$ Lo spettro della luce Čerenkov in funzione della lunghezza d'onda λ é:

$$\frac{dN}{d\lambda} = \frac{2\pi\alpha l}{c} \left(1 - \frac{n^2}{beta^2}\right) \frac{1}{\lambda^2}$$

dove α é la costante di struttura fine e l é la lunghezza della traccia.

Una particella carica emette circa 390 fotoni per 1cm di lunghezza in acqua nel range $300\,\mathrm{nm}<\lambda<700\mathrm{nm}.$

II Čerenkov wall

La presenza di Radon pone un limite inferiore all'energia degli elettroni rivelabile.

2

N.B. La concentrazione di Radon nel rivelatore é di 1500 Bq/m³ d'estate e 30 Bq/m³ d'inverno, questo perché l'aria soffina nella miniera d'inverno e fuori dalla miniera in estate. Il rivelatore é rivestito da "Mineguard", un poliuretano che blocca il radon emanato dalla roccia; aria purificata é flussata nei 60 cm di intercapedine fra la roccia e il rivelatore.

Interazioni di neutrini in SuperK

I neutrini solari sono rivelati in SuperK attraerso la reazione

$$\nu + e^- \rightarrow \nu + e^-$$

1

Nel range di energia dei neutrini solari le sezioni d'urto sono

$$\begin{cases} \sigma_{total} = 8.96 \times 10^{-44} cm^2 & \text{per } \nu_e \\ \sigma_{total} = 1.58 \times 10^{-44} cm^2 & \text{per } \nu_\mu , \nu_\tau \end{cases}$$

La differenza fra ν_e e ν_μ e ν_τ sta nel fatto che i primi interagiscono sia attraverso CC che NC, mentre ν_μ e ν_τ possono interagire solo attraverso NC. Ovviamente il sole emette solo ν_e , ma se oscillano possono trasformarsi in ν_μ e/o ν_τ .

Massima energia cinetica
$$T_{max}$$
 di un elettrone: T_{max}

$$T_{max} = \frac{E_{\nu}}{1 + m_e/2E_{\nu}}$$

Distribuzione di energia degli elettroni di rinculo: $F(T_e)dT_e = \left[\int_0^{E_{\nu}^{max}} \Phi(E_{\nu}) \frac{d\sigma}{dT_e} dE_{\nu}\right] dT_e$

dove $\Phi(E_{\nu})$ é il flusso di neutrini solari e E_{ν}^{max} é la massima energia di un neutrino solare.

Angolo θ fra la direzione dell'elettrone di rinculo e la direzione del neutrino:

$$\cos\theta = \frac{1 + m_e/E_\nu}{\sqrt{1 + 2m_e/T_e}}$$

e la distribuzione angolare é
$$F(\theta)d\theta = \left[\int_{0}^{E_{\nu}^{max}} \Phi(E_{\nu}) \frac{d\sigma}{dT_{e}} \frac{dT_{e}}{d\theta} dE_{\nu}\right] d\theta$$

Calibrazioni in SuperK

Fototubi

 Guadagno dei PMT Lampada allo Xenon con luce diffusa da una "Scintillator Ball" posizionabile a scelta nel rivelatore.

Distribuzioni di singolo fotoelettrone Sorgente di Nickel. La sorgente di -Nickel é attivata da neutroni emessi da una sorgente di ${}^{252}Cf$. I vari isotopi del Nikel – 58 Ni, 60 Ni, 62 Ni, 64 Ni, – emettono γ a 9.0, 7.82, 6.84 e 6.10 MeV rispettivamente. La sorgente puó essere spostata in varie zone del

rivelatore. Ogni segnale é praticamente

• Timing Laser N^2 , su dye, su "diffuser ball". Calibrazione a 1 ns.

Trasparenza dell'acqua

di singolo elettrone.

- 23
- Laser N^2 , il segnale viene raccolto da una telecamera a CCD
 - Elettroni da decadimento dei μ passanti, con energia fra i 37 e 53 MeV.
 - Muoni passanti: $Q_i = K \frac{a(\theta_i)}{L_i} \exp{-\frac{L_i}{\lambda}}$, Q_i : carica sul i-mo PMT, L_i : distanza traccia-PMT, θ_i : angolo luce-PMT, λ : lunghezza di attenuazione dell'acqua (mediata sulle lunghezze d'onda della luce Čerenkov).

Energia

LINAC Un Linac da $5\sim 16\,MeV$,

stabilitá allo 0.3% (misurata da un germanio), spara nell'acqua, dall'alto, attraverso una beam-pipe. Posizione e angolo della beam-pipe possono essere variate.

- Sorgente di Nickel
- Elettroni da decadimento dei μ passanti

Efficienza di Trigger

Sorgente di Nickel

Sistematiche finali sulla scala di energia: 1.4%

Systematic Errors	for 22.5 kton,	1258days
	5.0-20MeV sample	S and the second se

	Flux	Seasonal	Day-Night binned data
E Coole Develution	+ 1.4	+ 1.2	+ 1.2
E-Scale, Resolution	- 1.4	- 1.1	- 1.1
⁸ B spectrum	+ 1.2		
	- 0.9		
Trigger Efficiency	+ 0.5	± 0.1	· · · · · · · · · · · · · · · · · · ·
2nd lovel	- 0.3		
Trigger Efficiency	± 0.2	± 0.1	
1st Reduction	± 1.0		
	+ 1.9		
2nd Reduction	- 1.3	± 0.5	
Spallation Dead Time	± 0.2	± 0.1	± 0.1
Gamma cut	± 0.5	± 0.25	
Vertex Shift	± 1.3		
Non-flat BG	± 0.1		± 0.4
Angular Resolution	± 1.2		-
Cross Section	± 0.5	0	
Live time	± 0.1	± 0.1	± 0.1
Total	+ 3.5	+ 1.3	+ 1.3
	- 3.0	- 1.3	- 1.2

I neutrini vengono dal Sole

Run		N_{hit}	50/95%	Analysis	Live-time	е
period		threshold	efficiency	threshold	(days)
			(MeV)	(MeV)		
(1) May 199	$96 \sim$	40.6	5.7 / 6.2	6.5	280	0
(2) May 199	$97\sim$	34.5	4.7 / 5.2	5.0	650	0
(3) Sep. 199	$99 \sim$	30.4	4.2 / 4.6	5.0	320	0
(4) Sep. 200	~ 00	27.7	3.7 / 4.2	5.0	246	6
Numero di neutrini solari: $22400 \pm 88 (\text{stat.} + \text{sys})$						
(~ 13 eventi al giorno)						
$=$ 2.35 ± 0.02 (stat.) ± 0.08 (syst.) $\times 10^{6}$ /cm ² s						
Data/ $SSM_{BP02} = 0.451 \pm 0.05 (\text{stat}) \pm ^{0.016}_{0.014} (\text{syst})$						

Variazioni Temporali

Il puzzle dei neutrini solari

I risultati sperimentali vengono da SuperK, sensibile ai ν_B , da Homestake, sensibile a $\nu_{Be} + \nu_B$ e dagli esperimenti del gallio, sensibili a $\nu_{pp} + \nu_{Be} + \nu_B$. Le incognite sono i flussi dei neutrini del Boro, del Berillio e pp \rightarrow Tre equazioni e tre incognite.

Se x é il rapporto fra i flussi misurati e quelli predetti dal MC: $x = \phi_m/\phi_{BP98}$, la soluzione e'

Assumendo contributi da altri componenti uguali a quelli Assumendo contributi da altri componenti = 0: predetti: • $x_B = 0.47 \pm 0.02$

- $x_B = 0.47 \pm 0.02$
- $x_{Be} = -0.68 \pm 0.22$
- $x_{PP} = 1.03 \pm 0.14$

- $x_{Be} = -0.18 \pm 0.22$
- $x_{PP} = 1.03 \pm 0.14$

Controprova: Flusso di SuperK $\rightarrow 2.40 \pm 0.10 \times 10^6 \nu / cm^2 / s$. Moltiplicato per la sezione d'urto dei neutrini in ${}^{37}Cl (1.14 \pm 0.03 \times 10^{-42} cm^2) \rightarrow 2.78 \pm 0.14 SNU$ in Homestake da ${}^{8}B$. Flusso di Homestake (${}^{8}B + {}^{7}Be$ +PeP+CNO)= 2.56 ± 0.23 SNU $\Rightarrow {}^{7}Bep$ +PeP+CNO in Homestake = -0.22 ± 0.26 SNU

In ogni caso x_{Be} risulta consistente con zero (forzato dal risultato di Homestake).

MA i neutrini il ciclo del boro derivano dal ciclo del berillio

Ancora sul puzzle dei neutrini solari

SPIEGAZIONI del Solar Neutrino Puzzle

- 1. Esperimenti sbagliati
- 2. C'e' qualcosa che non va in Homestake, o per lo meno nelle sue sistematiche e calibrazioni.
- 3. I neutrini del berillio non sono piú ν_e quando raggiungono i rivelatori \rightarrow oscillazione di neutrini.

FIT globale ai dati dei neutrini solari

Le soluzioni al fit globale sulle oscillazioni di neutrini solari si dividono in due categorie:

MSW Sono soluzioni presenti grazie al meccanismo MSW all'interno del sole. Ci sono tre di queste soluzioni:

SMA (Small Mixing Angle),

LMA (Large Mixing Angle)

LOW.

Just So Detta anche oscillazione nel vuoto: la distanza terra-sole é esattamente (e curiosamente) proprio quella caratteristica delle oscillazioni solari.

All the results have very strong deficits and the oscillation interpretation works very well over other explanations. Why do people have not convinced that the solar neutrinos are oscillating? Why solar neutrinos could not get a credit for the discovery of neutrino oscillations. Atm ν has won!! **Reason1.** People working on solar v is too shy to claim that. **Reason2.** Doubt on the flux No body has looked inside of the sun Although the astrophysical solution is not favored, and the recent development of the Helioseismology have proved that the SSM is correct. **Reason3.** Possible solutions are not unique. At least four solutions. Need Flux independent evidence Like atm-? zenith angle distribution **Obtain unique solution** By energy spectrum distortion **Smoking** day/night flux difference Guns seasonal variations

32

Possibili Smoking Guns

1) **Modulazione dello spettro dei neutrini**: Le diverse soluzioni di oscillazione distorcono in modo diverso lo spettro dei neutrini solari. Le distorsioni sono evidenti sotto 1 MeV.

2) Effetto day/night: Le soluzioni MSW prevedono effetti di rigenerazione dei ν_e nell'attraversare la terra \rightarrow il flusso misurato di giorno risulta diverso dal flusso misurato di notte.

3) **Variazioni Stagionali**: la soluzione "just-so", calibrata sulla distanza sole-terra, varia il flusso in funzione della distanza sole-terra in modo sensibilmente maggiore dalle correzioni di angolo solido.

Rapporto NC/CC o ES/CC: I ν_e si trasformano in ν_{μ} o in ν_{τ} (o al limite in ν sterili) a causa dell'oscillazione. s: Command not found. peró possono interagire attraverso le correnti neutre o lo scattering elastico su elettrone. Un rivelatore sensibile alle correnti neutre ottiene la normalizzazione al flusso totale di neutrini (non sterili), mentre con le correnti cariche ottiene il flusso di ν_e . Una differenza dei due flussi é la firma delle oscillazioni.

1), 2) e 3) sono accessibili a SuperK. 4) a SNO.

Modulazione dello spettro dei neutrini solari

Nel caso delle soluzioni MSW lo spettro dei neutrini uscenti risulta fortemente modulato.

modu

34

Smoking guns a SuperKamiokande (cilecca)

Effetto Giorno/Notte

- Nessun effetto Model Independent rivelato in SuperKamiokande.
- Non necessariamente in conflitto con l'ipotesi di oscillazione.
- Migliori (diverse) sensibilitá sono richieste.

M. Mezzetto, INFN Padova, Lezioni di Dottorato di Ricerca, Padova, Aprile 2003

35

Distorsioni dello Spettro

v Reactions in SNO

$$cc v_e + d \Rightarrow p + p + e^{-1}$$

•Good measurement of v_e energy spectrum •Weak directional sensitivity $\propto 1-1/3\cos(\theta)$

Measure total ⁸B v flux from the sun.
Equal cross section for all v types

-Mainly sensitive to $\nu_{e,}$ some sensitivity to ν_{μ} and ν_{τ} -Strong directional sensitivity

Inclusive $v_{\mu\tau}$ Appearance

Two possibilities:

$$\frac{\text{CC}}{\text{NC}} = \frac{v_{\text{e}}}{v_{\text{e}} + v_{\mu} + v_{\tau}}$$

Advantages:

- NC gives total flux directly
- Cross section uncertainties cancel

$$\frac{CC}{ES} = \frac{v_{e}}{v_{e} + 0.14(v_{\mu} + v_{\tau})}$$

Advantages:

- ES excess points to Sun
- Can match energy regimes
- Super-K precision measurement

CC/ES used in this analysis

Radioactive Backgrounds

Extracting Signals

Max. Likelihood fit for relative signal amplitudes

Segnali e fondi in SNO

Background events.

Source	Events
D_2O photodisintegration	44^{+8}_{-9}
$H_2O + AV$ photodisintegration	27^{+8}_{-8}
Atmospheric $ u$'s and	0
sub-Cherenkov threshold μ 's	4 ± 1
Fission	$\ll 1$
2 H($lpha, lpha$)pn	2 ± 0.4
17 O($lpha$,n)	$\ll 1$
Terrestrial and reactor $ar{ u}$'s	1^{+3}_{-1}
External neutrons	$\ll 1$
Total neutron background	78 ± 12
D_2O Cherenkov	20^{+13}_{-6}
H_2O Cherenkov	3^{+4}_{-3}
AV Cherenkov	6^{+3}_{-6}
PMT Cherenkov	16^{+11}_{-8}
Total Cherenkov background	45^{+18}_{-12}

Systematic errors.

Source	CC Uncert.	NC Uncert.	$\phi_{\mu\tau}$ Uncert.
	(percent)	(percent)	(percent)
Energy scale	-4.2,+4.3	-6.2,+6.1	-10.4,+10.3
Energy resolution	-0.9,+0.0	-0.0,+4.4	-0.0,+6.8
Energy non-linearity	± 0.1	± 0.4	± 0.6
Vertex resolution	± 0.0	± 0.1	± 0.2
Vertex accuracy	-2.8,+2.9	± 1.8	± 1.4
Angular resolution	-0.2,+0.2	-0.3,+0.3	-0.3,+0.3
Internal source pd	± 0.0	-1.5,+1.6	-2.0,+2.2
External source pd	± 0.1	-1.0,+1.0	± 1.4
D ₂ O Cherenkov	-0.1,+0.2	-2.6,+1.2	-3.7,+1.7
H ₂ O Cherenkov	± 0.0	-0.2,+0.4	-0.2,+0.6
AV Cherenkov	± 0.0	-0.2,+0.2	-0.3,+0.3
PMT Cherenkov	± 0.1	-2.1,+1.6	-3.0,+2.2
Neutron capture	± 0.0	-4.0,+3.6	-5.8,+5.2
Cut acceptance	-0.2,+0.4	-0.2,+0.4	-0.2,+0.4
Experimental uncertainty	-5.2,+5.2	-8.5,+9.1	-13.2,+14.1
Cross section [?]	± 1.8	± 1.3	± 1.4

M. Mezzetto, INFN Padova, Lezioni di Dottorato di Ricerca, Padova, Aprile 2003

Elastic Scattering

 $\begin{array}{l} 263.6^{+26.4}_{-25.6} \text{ eventi} \\ \phi^{\rm SNO}_{\rm ES} = 2.39^{+0.24}_{-0.23} \text{(stat.)}^{+0.12}_{-0.12} \text{ (syst.)} \end{array}$

Charged Currents

 $\begin{array}{l} 1967.7^{+61.9}_{-60.9} \text{ eventi} \\ \phi^{\rm SNO}_{\rm CC} = 1.76^{+0.06}_{-0.05} \text{(stat.)}^{+0.09}_{-0.09} \text{ (syst.)} \end{array}$

Neutral Currents

 $576.5^{+49.5}_{-48.9}$ eventi $\phi_{\rm NC}^{\rm SNO} = 5.09^{+0.44}_{-0.43}$ (stat.) $^{+0.46}_{-0.43}$ (syst.)

 $\phi_{\mu\tau}$ = 3.41^{+0.66}_{-0.64}: 5.3 $\sigma > 0$

Combinando con SK:

 $\phi_{\mu\tau} = 3.45^{+0.65}_{-0.62}$: 5.5 $\sigma > 0$

Risultati di SNO

DAY-NIGTH a SNO

M. Mezzetto, INFN Padova, Lezioni di Dottorato di Ricerca, Padova, Aprile 2003

Solar neutrinos before KamLAND

Four types of solar neutrino experiments:

- Chlorine (rate)
- Gallium (Ga rate + W-S effect)
- SK spectrum (44 bins)
- SNO spectrum (34 bins)

An interesting point:

High δm^2 or, equivalently, $\langle P_{ee} \rangle \sim 1/2$ not ruled out by any single experiment yet, although CI and SNO disfavor this solution

Solar problem: status before KamLAND

By combining the four solar experiments, only the large mixing angle solutions are seen to survive:

Gianluigi Fogli

^{10th} International Workshop on "Neutrino Telescopes" - Venice, March 12, 2003

10

CI+ Ga + SK + SNO (no CHOOZ)

10⁻³

Esperimento BOREX

Laboratori Nazionali del Gran Sasso

300 ton di scintillatore liquido (fiduciale = 100 ton) a bassissima radioattivita'.

Rivela lo scattering elastico $\nu_e e^- \rightarrow \nu_e e^-$ con soglia a 250 $keV \rightarrow$ rivela i neutrini del ⁷Be (linea a 863 keV, elettroni fino a 664 keV).

Attesi circa 46 ev/giorno secondo lo SSM.

- SMA $\Rightarrow\sim$ completamente soppressi
- LMA $\Rightarrow\sim$ soppressi a meta'
- V.O. \Rightarrow variazione stagionale

Inizio della presa dati previsto per il (????)

Borexino total rates compared with the SMA, LMA and LOW solutions

Borexino N-D asymmetry compared with the SMA, LMA and LOW solutions

Borexino discovery potential compared with the SMA, LMA and LOW solutions

