BENE workshop

Resolving parameter degeneracies in long-baseline experiments with atmospheric neutrino data

Thomas Schwetz
SISSA, Trieste

based on:
P. Huber, M. Maltoni, TS, hep-ph/0501037
Outline

- Introduction
- Parameter degeneracies in LBL experiments
- Three-flavour effects in ATM experiments
- Resolving the degeneracies by a combined LBL and ATM analysis
 - simulation of the T2K-II experiment
 - preliminary analysis of CERN-Frejus experiments
- Concluding remarks
Introduction

3-flavour neutrino oscillation parameters:

\[\Delta m_{31}^2 \]

\[U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \]

\[\Delta m_{21}^2 \]

\[\begin{pmatrix} c_{13} & 0 & e^{-i\theta_{13}} s_{13} \\ 0 & 1 & 0 \\ -e^{i\theta_{13}} s_{13} & 0 & c_{13} \end{pmatrix} \]

\[\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
3-flavour neutrino oscillation parameters:

\[
\Delta m_{31}^2 = \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix},
\quad
\Delta m_{21}^2 = \begin{pmatrix}
c_{13} & 0 & e^{-i\delta} s_{13} \\
0 & 1 & 0 \\
-e^{i\delta} s_{13} & 0 & c_{13}
\end{pmatrix},
\quad
\Delta m_{atm}^2 = \begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

atmospheric + K2K

GHOOZ

solar + KamLAND

Maltoni, Schwetz, Tortola, Valle, hep-ph/0405172
Introduction

3-flavour neutrino oscillation parameters:

\[|\Delta m^2_{31}| \]

\[
U = \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\]

\[
\Delta m^2_{21} = \begin{pmatrix}
c_{13} & 0 & e^{-i\alpha} s_{13} \\
0 & 1 & 0 \\
-e^{i\alpha} s_{13} & 0 & c_{13}
\end{pmatrix}
\]

\[
\frac{|\Delta m^2_{31}|}{10^{-3}\text{eV}^2} = 2.2^{+0.37}_{-0.27} \\
(14\%)
\]

\[
sin^2 \theta_{23} = 0.50^{+0.06}_{-0.05} \\
(11\%)
\]

atmospheric + K2K

\[
sin^2 \theta_{13} < 0.05 (3\sigma)
\]

CHOOZ

\[
\frac{|\Delta m^2_{21}|}{10^{-5}\text{eV}^2} = 7.9 \pm 0.3 \\
(4\%)
\]

\[
sin^2 \theta_{12} = 0.30^{+0.03}_{-0.02} \\
(9\%)
\]

solar + KamLAND

Maltoni, Schwetz, Tortola, Valle, hep-ph/0405172
Open questions:

How small is 13?

What is the value of the CP phase CP?

Type of the neutrino mass ordering (sign of m_{231}):

\text{INVERTEDNORMAL} \\
\text{MASS} \\
\nu^3 \\
\nu^2 \\
\nu^1 \\
\nu^3 \\
\nu^e \\
\nu^\mu \\
\nu^\tau
Open questions:

- How small is θ_{13}?
Open questions:

- How small is θ_{13}?
- What is the value of the CP phase δ_{CP}?
Open questions:

- How small is θ_{13}?
- What is the value of the CP phase δ_{CP}?
- Type of the neutrino mass ordering (sign of Δm_{31}^2)
Parameter degeneracies in LBL experiments

H. Minakata, H. Nunokawa, JHEP 10 (2001) 001

and many more (I apologize for omissions)
The $\nu_\mu \to \nu_e$ oscillation probability

$P_{\mu e}$ in vacuum to leading order in $\sin^2 2\theta_{13}$ and α

\[P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31} \]
\[+ \alpha \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \Delta_{31} \sin \Delta_{31} \cos(\Delta_{31} \pm \delta_{\text{CP}}) \]
\[+ \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \Delta_{31}^2 \]

with

\[\alpha \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2}, \quad \Delta_{31} \equiv \frac{\Delta m_{31}^2 L}{4E_\nu} \]
The **8-fold degeneracy**

- **The intrinsic or** \((\delta_{CP}, \theta_{13}) \) **degeneracy**

 several solutions in the \((\delta_{CP}, \theta_{13}) \) plane

\[
P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31} + \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \Delta_{31}^2 \\
+ \alpha \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \Delta_{31} \sin \Delta_{31} \cos(\Delta_{31} \pm \delta_{CP})
\]

The 8-fold degeneracy

- **The intrinsic** or \((\delta_{CP}, \theta_{13})\) degeneracy

 several solutions in the \((\delta_{CP}, \theta_{13})\) plane

- **The hierarchy** or \(\text{sgn}(\Delta m_{31}^2)\) degeneracy

 H. Minakata, H. Nunokawa, JHEP 10 (2001) 001

 solutions for both signs of \(\Delta m_{31}^2\) (affects mainly \(\delta_{CP}\))

\[
P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31} + \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \Delta_{31}^2
+ \alpha \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \Delta_{31} \sin \Delta_{31} \cos(\Delta_{31} \pm \delta_{CP})
\]
The 8-fold degeneracy

- **The intrinsic or \((\delta_{CP}, \theta_{13})\) degeneracy**
 several solutions in the \((\delta_{CP}, \theta_{13})\) plane

- **The hierarchy or \(\text{sgn}(\Delta m_{31}^2)\) degeneracy**
 H. Minakata, H. Nunokawa, JHEP 10 (2001) 001
 solutions for both signs of \(\Delta m_{31}^2\) (affects mainly \(\delta_{CP}\))

- **The octant or \(\theta_{23}\) degeneracy**
 \(\nu_\mu\)-disappearance channel gives only \(\sin^2 2\theta_{23}\)
 solutions for \(\theta_{23}\) and \(\pi/2 - \theta_{23}\) (affects mainly \(\sin^2 2\theta_{13}\))

\[
P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31} + \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \Delta_{31}^2
\]
\[
+ \alpha \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \Delta_{31} \sin \Delta_{31} \cos(\Delta_{31} \pm \delta_{CP})
\]
The 8-fold degeneracy

- **The intrinsic** or $(\delta_{CP}, \theta_{13})$ degeneracy
 several solutions in the $(\delta_{CP}, \theta_{13})$ plane

- **The hierarchy** or $\text{sgn}(\Delta m_{31}^2)$ degeneracy
 H. Minakata, H. Nunokawa, JHEP 10 (2001) 001
 solutions for both signs of Δm_{31}^2 (affects mainly δ_{CP})

- **The octant** or θ_{23} degeneracy
 ν_μ-disappearance channel gives only $\sin^2 2\theta_{23}$
 solutions for θ_{23} and $\pi/2 - \theta_{23}$ (affects mainly $\sin^2 2\theta_{13}$)

overall an 8-fold degeneracy

The **T2K-II** long-baseline experiment

4 MW superbeam at JPARC
mean neutrino energy: 0.76 GeV (2° OA)
1 Mt Cherenkov detector at Kamioka
baseline: 295 km

<table>
<thead>
<tr>
<th></th>
<th>ν (2 Mt yrs)</th>
<th>$\bar{\nu}$ (6 Mt yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_\mu \to \nu_e$ signal</td>
<td>21 300</td>
<td>16 000</td>
</tr>
<tr>
<td>$\nu_\mu \to \nu_e$ background</td>
<td>2 140</td>
<td>3 260</td>
</tr>
<tr>
<td>$\nu_\mu \to \nu_\mu$ signal</td>
<td>73 200</td>
<td>75 600</td>
</tr>
<tr>
<td>$\nu_\mu \to \nu_\mu$ background</td>
<td>340</td>
<td>320</td>
</tr>
</tbody>
</table>

$\sin^2 2\theta_{13} = 0.05$, $\sin^2 \theta_{23} = 0.5$, $\sin^2 \theta_{12} = 0.3$, $\delta_{CP} = 0$,
$\Delta m^2_{21} = 8.1 \times 10^{-5}$ eV2, $\Delta m^2_{31} = 2.2 \times 10^{-3}$ eV2
Analysis method

Calculation of event rates for given experiment:

\[N_i(\alpha) = \Phi \cdot \sigma \cdot R \cdot \epsilon \cdot P(\hat{\theta}) \]

\(\Phi \): neutrino flux
\(\sigma \): detection cross section
\(R \): energy resolution
\(\epsilon \): efficiencies

\(P(\hat{\theta}) \): 3-flavour osc. prob., \(\hat{\theta} = (\Delta m^2_{21}, \Delta m^2_{31}, \theta_{12}, \theta_{23}, \theta_{13}, \delta) \)
Analysis method

Calculation of event rates for given experiment:

\[N_i(\alpha) = \Phi \cdot \sigma \cdot R \cdot \epsilon \cdot P(\hat{\theta}) \]

- \(\Phi \): neutrino flux
- \(\sigma \): detection cross section
- \(R \): energy resolution
- \(\epsilon \): efficiencies

\(P(\hat{\theta}) \): 3-flavour osc. prob., \(\hat{\theta} = (\Delta m_{21}^2, \Delta m_{31}^2, \theta_{12}, \theta_{23}, \theta_{13}, \delta) \)

simulate data for “true values” \(\hat{\theta}^{\text{true}} \): \(N_i(\hat{\theta}^{\text{true}}) \)

\[\chi^2(\hat{\theta}; \hat{\theta}^{\text{true}}) \rightarrow \text{allowed regions for } \hat{\theta} \]

including systematical errors, correlations, degeneracies
Analysis method

Calculation of event rates for given experiment:

\[N_i(\alpha) = \Phi \cdot \sigma \cdot R \cdot \epsilon \cdot P(\hat{\theta}) \]

- **\(\Phi \)**: neutrino flux
- **\(\sigma \)**: detection cross section
- **\(R \)**: energy resolution
- **\(\epsilon \)**: efficiencies

\(P(\hat{\theta}) \): 3-flavour osc. prob.,

\[\hat{\theta} = (\Delta m_{21}^2, \Delta m_{31}^2, \theta_{12}, \theta_{23}, \theta_{13}, \delta) \]

simulate data for “true values” \(\hat{\theta}^{\text{true}} \):

\[N_i(\hat{\theta}^{\text{true}}) \]

\(\chi^2(\hat{\theta}; \hat{\theta}^{\text{true}}) \rightarrow \) allowed regions for \(\hat{\theta} \)

including systematical errors, correlations, degeneracies

GLoBES software

P. Huber, M. Lindner, W. Winter, hep-ph/0407333

http://www.ph.tum.de/~globes/
Degeneracies and T2K-II

The intrinsic degeneracy is absent for T2K-II

\[
\sin^2 2\theta_{13} = 0.01 \\
\delta_{CP} = \frac{\pi}{4} \\
\sin^2 \theta_{23} = 0.3
\]

\[
R = \frac{N_i^{tr} - N_i^{deg}}{\sqrt{(N_i^{tr} + N_i^{deg})/2}}
\]
Degeneracies and T2K-II

True values:

\[\sin^2 2\theta_{13} = 0.03 \]
\[\delta_{\text{CP}} = -0.85\pi \]
\[\sin^2 \theta_{23} = 0.4 \]
\[\Delta m^2_{31} = 2.2 \times 10^{-3}\text{eV}^2 \]
True values:

\[
\sin^2 2\theta_{13} = 0.03 \\
\delta_{CP} = -0.85\pi \\
\sin^2 \theta_{23} = 0.4 \\
\Delta m_{31}^2 = 2.2 \times 10^{-3}\text{eV}^2
\]
Degeneracies and T2K-II

True values:

\[\sin^2 2\theta_{13} = 0.03 \]
\[\delta_{CP} = -0.85\pi \]
\[\sin^2 \theta_{23} = 0.4 \]
\[\Delta m_{31}^2 = 2.2 \times 10^{-3}\text{eV}^2 \]
Degeneracies and T2K-II

True values:

\[\sin^2 2\theta_{13} = 0.03 \]
\[\delta_{\text{CP}} = -0.85\pi \]
\[\sin^2 \theta_{23} = 0.4 \]
\[\Delta m^2_{31} = 2.2 \times 10^{-3} \text{eV}^2 \]

ambiguities in \(\theta_{13} \) and \(\delta_{\text{CP}} \)
no information on the hierarchy
3-flavour effects in atmospheric neutrinos

3-flavour effects in atmospheric neutrinos

excess of electron-like events:

\[
\frac{N_e}{N_0^e} - 1 \simeq (r s_{23}^2 - 1) P_{2\nu}(\Delta m_{31}^2, \theta_{13}) \quad \theta_{13}\text{-effects}
\]

\[
+ (r c_{23}^2 - 1) P_{2\nu}(\Delta m_{21}^2, \theta_{12}) \quad \Delta m_{21}^2\text{-effects}
\]

\[- 2s_{13} s_{23} c_{23} r \Re(A_{ee}^* A_{\mu e}) \quad \text{interference: } \delta_{CP}
\]

\[
r = r(E_\nu) \equiv \frac{F_\mu^0(E_\nu)}{F_e^0(E_\nu)}
\]

\[
r \approx 2 \quad (\text{sub-GeV})
\]

\[
r \approx 2.6 - 4.5 \quad (\text{multi-GeV})
\]

θ_{13}-effects

$$\frac{N_e}{N_e^0} - 1 \approx (r \ s_{23}^2 - 1) \ P_{2\nu}(\Delta m_{31}^2, \theta_{13})$$

resonant matter effect in $P_{2\nu}(\Delta m_{31}^2, \theta_{13})$ for multi-GeV events ($r \approx 2.6 - 4.5$)

normal hierarchy: enhancement for neutrinos
inverted hierarchy: enhancement for anti-neutrinos

detection cross sections are different for neutrinos and anti-neutrinos

sensitivity to the neutrino mass hierarchy
\[
\frac{N_e}{N^0_e} - 1 \sim (r s^2_{23} - 1) P_{2\nu}(\Delta m^2_{31}, \theta_{13})
\]
Δm_{21}^2-effects

$$\frac{N_e}{N_0^e} - 1 \approx (r c_{23}^2 - 1) P_{2\nu}(\Delta m_{21}^2, \theta_{12})$$

Peres, Smirnov, hep-ph/0309312

contours of $\frac{N_e}{N_0^e} - 1$

relevant for sub-GeV events

sensitivity to the octant of θ_{23}
Mega ton atmospheric neutrino experiments

projects for Mt water Cherenkov detectors
(SK: 22.5 kt)

UNO (US), Hyper-K (Japan), Frejus (Europe)
Mega ton atmospheric neutrino experiments

projects for Mt water Cherenkov detectors
(SK: 22.5 kt)

UNO (US), Hyper-K (Japan), Frejus (Europe)

multi-purpose experiments:

- far-detector for LBL experiments
- solar and atmospheric neutrinos
- supernova neutrinos
- proton decay
- ...
The HK atmospheric neutrino experiment

assume 9 Mt yrs ATM data (100 × SK-I data)

<table>
<thead>
<tr>
<th></th>
<th>zenith angle</th>
<th>ν</th>
<th>$\bar{\nu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-like sub-GeV</td>
<td>10 bins</td>
<td>239 000</td>
<td>58 000</td>
</tr>
<tr>
<td>e-like multi-GeV</td>
<td>10 bins</td>
<td>52 700</td>
<td>18 100</td>
</tr>
<tr>
<td>μ-like sub-GeV</td>
<td>10 bins</td>
<td>232 000</td>
<td>66 200</td>
</tr>
<tr>
<td>μ-like multi-GeV</td>
<td>10 bins</td>
<td>108 000</td>
<td>49 100</td>
</tr>
<tr>
<td>upward going μ</td>
<td>$10_{\text{thr}} + 5_{\text{st}}$</td>
<td>127 000</td>
<td>65 400</td>
</tr>
</tbody>
</table>

$\sin^2 2\theta_{13} = 0.05, \sin^2 \theta_{23} = 0.5, \sin^2 \theta_{12} = 0.3, \delta_{\text{CP}} = 0,$

$\Delta m_{21}^2 = 8.1 \times 10^{-5} \text{ eV}^2, \Delta m_{31}^2 = 2.2 \times 10^{-3} \text{ eV}^2$
The HK atmospheric neutrino experiment

assume 9 Mt yrs ATM data (100 × SK-I data)

<table>
<thead>
<tr>
<th></th>
<th>zenith angle</th>
<th>ν</th>
<th>$\bar{\nu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-like sub-GeV</td>
<td>10 bins</td>
<td>239 000</td>
<td>58 000</td>
</tr>
<tr>
<td>e-like multi-GeV</td>
<td>10 bins</td>
<td>52 700</td>
<td>18 100</td>
</tr>
<tr>
<td>μ-like sub-GeV</td>
<td>10 bins</td>
<td>232 000</td>
<td>66 200</td>
</tr>
<tr>
<td>μ-like multi-GeV</td>
<td>10 bins</td>
<td>108 000</td>
<td>49 100</td>
</tr>
<tr>
<td>upward going μ</td>
<td>$10_{\text{thr}} + 5_{\text{st}}$</td>
<td>127 000</td>
<td>65 400</td>
</tr>
</tbody>
</table>

WARNING:
- same systematics as SK-I
The HK atmospheric neutrino experiment

assume 9 Mt yrs ATM data (100 \times SK-I data)

<table>
<thead>
<tr>
<th></th>
<th>zenith angle</th>
<th>(\nu)</th>
<th>(\bar{\nu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e)-like sub-GeV</td>
<td>10 bins</td>
<td>239 000</td>
<td>58 000</td>
</tr>
<tr>
<td>(e)-like multi-GeV</td>
<td>10 bins</td>
<td>52 700</td>
<td>18 100</td>
</tr>
<tr>
<td>(\mu)-like sub-GeV</td>
<td>10 bins</td>
<td>232 000</td>
<td>66 200</td>
</tr>
<tr>
<td>(\mu)-like multi-GeV</td>
<td>10 bins</td>
<td>108 000</td>
<td>49 100</td>
</tr>
<tr>
<td>upward going (\mu)</td>
<td>(10_{\text{thr}} + 5_{\text{st}})</td>
<td>127 000</td>
<td>65 400</td>
</tr>
</tbody>
</table>

WARNING:

- same systematics as SK-I
- same binning (zenith angle, energy) as SK-I
The ATM analysis

- Full numerical three-flavour analysis
 - both Δm^2_{31} and Δm^2_{21} taken into account
 - realistic treatment of earth matter effects

based on:
The ATM analysis

- Full numerical three-flavour analysis
 - both Δm^2_{31} and Δm^2_{21} taken into account
 - realistic treatment of earth matter effects

based on:

- Combined with LBL data by using a generalized version of the GLoBES software
Resolving the degeneracies
Resolving the degeneracies

True values:
\[
\sin^2 2\theta_{13} = 0.03, \quad \delta_{CP} = -0.85\pi, \quad \Delta m^2_{31} = 2.2 \times 10^{-3} \text{eV}^2
\]
Resolving the degeneracies

True values:

\[\sin^2 2\theta_{13} = 0.03, \quad \delta_{\text{CP}} = -0.85\pi, \quad \Delta m_{31}^2 = 2.2 \times 10^{-3}\text{eV}^2 \]
Resolving the degeneracies

True values:
\[
\sin^2 2\theta_{13} = 0.03, \quad \delta_{\text{CP}} = -0.85\pi, \quad \Delta m^2_{31} = 2.2 \times 10^{-3}\text{eV}^2
\]
Resolving the degeneracies

True hierarchy: normal

True hierarchy: inverted

$\delta_{CP}^{true} = 0$

$\text{sng}(\Delta m^2)$-deg.
Resolving the degeneracies

True hierarchy: normal

True hierarchy: inverted

\[\delta_{\text{CP}}^{\text{true}} = \pi \]

\[\delta_{\text{CP}}^{\text{true}} = 0 \]

\[\delta_{\text{CP}}^{\text{true}} = \pi/2 \]
Which are the relevant ATM data samples?

true value of $\sin^2 \theta_{23}$

true value of $\sin^2 \theta_{13}$

$\delta_{CP} = 0$

$\delta_{CP} = -\pi/2$
Identifying the mass hierarchy
Identifying the mass hierarchy

solid: LBL-only, dashed: ATM-only, shading: LBL+ATM
Identifying the mass hierarchy

solid: LBL-only, dashed: ATM-only, shading: LBL+ATM
Identifying the mass hierarchy

solid: LBL-only, dashed: ATM-only, shading: LBL+ATM
Do we really need a Mt experiment?
Luminosity scaling

True values: $\sin^2 \theta_{13} = 0.04$, $\sin^2 \theta_{23} = 0.4$, $\delta_{CP} = 0$, normal hierarchy.
Preliminary BB/SPL analysis

CERN-Frejus LBL experiments (PRELIMINARY)
simulation from Huber, Lindner, Rolinec, Winter, work in progress
Preliminary BB/SPL analysis

CERN-Frejus LBL experiments (PRELIMINARY)
simulation from Huber, Lindner, Rolinec, Winter, work in progress

- **Beta Beam**
 similar to the setups from Bouchez, Lindros, Mezzetto, hep-ex/0310059;
 Burguet-Castell et al., hep-ph/0312068; Donini et al., hep-ph/0406132

\[\bar{\nu}: \quad ^6\text{He} \quad (\gamma = 60, \, 3 \times 10^{18} \text{ decays/yr}), \]
\[\nu: \quad ^{18}\text{Ne} \quad (\gamma = 100, \, 1 \times 10^{18} \text{ decays/yr}), \]
10 yrs running
Preliminary BB/SPL analysis

CERN-Frejus LBL experiments (PRELIMINARY)
simulation from Huber, Lindner, Rolinec, Winter, work in progress

- **Beta Beam**
 similar to the setups from Bouchez, Lindros, Mezzetto, hep-ex/0310059;
 Burguet-Castell et al., hep-ph/0312068; Donini et al., hep-ph/0406132
 \[\bar{\nu}: \text{^{6}He (}\gamma = 60, 3 \times 10^{18} \text{ decays/yr)},\]
 \[\nu: \text{^{18}Ne (}\gamma = 100, 1 \times 10^{18} \text{ decays/yr)},\]
 10 yrs running

- **SPL Superbeam**
 similar to SB from Gomes-Cadenas et al., hep-ex/0105297; Donini et al., hep-ph/0406132
 2.2 GeV proton beam from 4 MW SPL, 2 yrs \(\nu\), 8 yrs \(\bar{\nu}\)
Preliminary BB/SPL analysis

CERN-Frejus LBL experiments (PRELIMINARY)
simulation from Huber, Lindner, Rolinec, Winter, work in progress

- **Beta Beam**
similar to the setups from Bouchez, Lindros, Mezzetto, hep-ex/0310059; Burguet-Castell et al., hep-ph/0312068; Donini et al., hep-ph/0406132

 \[\bar{\nu}: \: ^6\text{He} \: (\gamma = 60, \: 3 \times 10^{18} \: \text{decays/yr}), \]

 \[\nu: \: ^{18}\text{Ne} \: (\gamma = 100, \: 1 \times 10^{18} \: \text{decays/yr}), \]

 10 yrs running

- **SPL Superbeam**
similar to SB from Gomes-Cadenas et al., hep-ex/0105297; Donini et al., hep-ph/0406132

 2.2 GeV proton beam from 4 MW SPL, 2 yrs \(\nu \), 8 yrs \(\bar{\nu} \)

- **450 kt water Cherenkov detector at Frejus**
main difference to T2K:

- baseline: 130 km
- \(E_\nu \simeq 0.2 - 0.3 \) GeV
- no spectral information available
Preliminary BB/SPL analysis

main difference to T2K:

- baseline: 130 km
- $E_\nu \simeq 0.2 - 0.3$ GeV
- no spectral information available

$(\theta_{13}, \delta_{CP})$-degeneracy cannot be resolved
Preliminary BB/SPL analysis

90% CL regions for the \((H^{tr}\ O^{tr}) \), \((H^{tr}\ O^{wr}) \), \((H^{wr}\ O^{tr}) \), \((H^{wr}\ O^{wr}) \) solutions

Dashed: LBL only, Solid: LBL+ATM

True values: \(\delta_{CP} = -0.85\pi \), \(\sin^2 \theta_{13} = 0.03 \), \(\sin^2 \theta_{23} = 0.6 \), 5% external precision on \(\Delta m^2_{31} \), \(\Delta m^2_{21} \), \(\theta_{23} \).
Preliminary BB/SPL analysis

90% CL regions for the $(H^{tr}O^{tr})$, $(H^{tr}O^{wr})$, $(H^{wr}O^{tr})$, $(H^{wr}O^{wr})$ solutions

True values: $\delta_{CP} = -0.85\pi$, $\sin^2 2\theta_{13} = 0.03$, $\sin^2 2\theta_{23} = 0.6$, 5% external precision on Δm^2_{31}, Δm^2_{21}, θ_{23}
Preliminary BB/SPL analysis

90% CL regions for the \((H^{tr}O^{tr}), (H^{tr}O^{wr}), (H^{wr}O^{tr}), (H^{wr}O^{wr})\) solutions

True values: \(\delta_{CP} = -0.85 \pi\), \(\sin^2 \theta_{13} = 0.03\), \(\sin^2 \theta_{23} = 0.4\), 5% external precision on \(\Delta m^2_{31}, \Delta m^2_{21}, \theta_{23}\)

Dashed: LBL only, solid: LBL+ATM
Concluding remarks
Combined analysis of LBL and ATM data provides an interesting method to resolve degeneracies.
Combined analysis of LBL and ATM data provides an interesting method to resolve degeneracies

- sensitivity to the **neutrino mass ordering** significantly increased
Concluding remarks

Combined analysis of LBL and ATM data provides an interesting method to resolve degeneracies

- sensitivity to the neutrino mass ordering significantly increased
- good sensitivity to the octant of θ_{23}
Concluding remarks

Combined analysis of LBL and ATM data provides an interesting method to resolve degeneracies

- sensitivity to the neutrino mass ordering significantly increased
- good sensitivity to the octant of θ_{23}
- ambiguities in the determination of $\sin^2 2\theta_{13}$ and δ_{CP} can be resolved
Concluding remarks

Combined analysis of LBL and ATM data provides an interesting method to resolve degeneracies

- sensitivity to the *neutrino mass ordering* significantly increased
- good sensitivity to the *octant of θ_{23}*
- ambiguities in the determination of $\sin^2 2\theta_{13}$ and δ_{CP} can be resolved

given the Mt detector for the LBL experiment, ATM data come for free!
Concluding remarks

Complementarity of LBL and ATM data:

Three-flavour effects in ATM data provide sensitivity to mass ordering and octant of θ_{23}.

The determination of m_{23} and $\sin^2\theta_{23}$ at the sub-percent level and a constraint on $\sin^2\theta_{13}$ from LBL data is necessary.

Thank you for your attention!

P. Huber, M. Maltoni, TS, hep-ph/0501037
Complementarity of LBL and ATM data:

- Three-flavour effects in ATM data provide sensitivity to mass ordering and octant of θ_{23}
Complementarity of LBL and ATM data:

- Three-flavour effects in ATM data provide sensitivity to mass ordering and octant of θ_{23}
- The determination of Δm_{31}^2 and $\sin^2 2\theta_{23}$ at the sub-percent level and a constraint on $\sin^2 2\theta_{13}$ from LBL data is necessary
Concluding remarks

Complementarity of LBL and ATM data:

- Three-flavour effects in ATM data provide sensitivity to mass ordering and octant of θ_{23}
- The determination of Δm^2_{31} and $\sin^2 2\theta_{23}$ at the sub-percent level and a constraint on $\sin^2 2\theta_{13}$ from LBL data is necessary

Thank you for your attention!

P.Huber, M.Maltoni, TS, hep-ph/0501037
Additional slides

True hierarchy: normal

- LBL only
- ATM only

True hierarchy: inverted

- wrong hierarchy ($\Delta \chi^2 = 10.4$)
- true solution

- wrong hierarchy ($\Delta \chi^2 = 6.6$)
- true solution

T. Schwetz, BENE workshop, CERN, 16-18 march 2005 – p.33
True $\theta_{13} = 0$

Resolving the octant-degeneracy:

![Graph showing $\Delta \chi^2$ vs. True value of $\sin^2 \theta_{23}$ with LBL+ATM, ATM only, and LBL only lines.](image)
\(\text{True } \theta_{13} = 0 \)

The limit on \(\sin^2 2\theta_{13} \):

![Graph showing sensitivity to \(\sin^2 2\theta_{13} \).](image)

- (a) right octant of \(\theta_{23} \)
- (b) wrong octant of \(\theta_{23} \)
- (c) combined

Dashed: LBL only, solid: LBL+ATM

\[P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31} + \ldots \]