Synergies between Future Atmospheric and Long Baseline Neutrino Experiments

Michele Maltoni

Departamento de Física Teórica (UAM) & Instituto de Física Teórica (UAM/CSIC) Universidad Autónoma de Madrid

Neutrino Telescopes 2009, Venice, Italy - March 11, 2009

- I. Introduction: atmospheric neutrino data
- II. Discussion: sensitivity to oscillation parameters
- III. Results: synergies with long-baseline experiments Conclusions

Neutrino oscillations: where we are

- Global six-parameter fit (including δ_{CP}):
 - Solar: CI + Ga + SK + SNO-I + SNO-II;
 - Atmospheric: SK-I + SK-II;
 - Reactor: Chooz + KamLAND;
 - Accelerator: K2K + Minos $(3.4 \times 10^{20} \text{ p.o.t.});$
- best-fit point and 1σ (3σ) ranges:

$$\begin{split} \theta_{12} &= 34.5 \pm 1.4 \begin{pmatrix} +4.8 \\ -4.0 \end{pmatrix}, \quad \Delta m_{21}^2 &= 7.67 \begin{smallmatrix} +0.22 \\ -0.21 \end{pmatrix} \times 10^{-5} \ \mathrm{eV}^2 \,, \\ \theta_{23} &= 43.1 \begin{smallmatrix} +4.4 \\ -3.5 \end{pmatrix} \begin{pmatrix} +10.1 \\ -8.0 \end{pmatrix}, \quad \Delta m_{31}^2 &= \begin{cases} -2.39 \pm 0.12 \begin{pmatrix} +0.37 \\ -0.40 \end{pmatrix} \times 10^{-3} \ \mathrm{eV}^2 \,, \\ +2.49 \pm 0.12 \begin{pmatrix} +0.39 \\ -0.36 \end{pmatrix} \times 10^{-3} \ \mathrm{eV}^2 \,, \\ \theta_{13} &= 3.2 \end{smallmatrix}$$

• neutrino mixing matrix:

$$\begin{split} |U|_{90\%} &= \begin{pmatrix} 0.80 \to 0.84 & 0.53 \to 0.60 & 0.00 \to 0.17 \\ 0.29 \to 0.52 & 0.51 \to 0.69 & 0.61 \to 0.76 \\ 0.26 \to 0.50 & 0.47 \to 0.66 & 0.64 \to 0.79 \end{pmatrix} \\ |U|_{3\sigma} &= \begin{pmatrix} 0.77 \to 0.86 & 0.50 \to 0.63 & 0.00 \to 0.22 \\ 0.22 \to 0.55 & 0.45 \to 0.73 & 0.57 \to 0.80 \\ 0.21 \to 0.55 & 0.41 \to 0.70 & 0.59 \to 0.82 \end{pmatrix} \end{split}$$

Michele Maltoni <michele.maltoni@uam.es>

- Present reactor and accelerator data dominate |Δm²₃₁| and θ₁₃ but give no info on:
 - the **mass hierarchy** (sign of Δm_{31}^2);
 - the **octant** (sign of $\theta_{23} \pi/4$);
 - the CP phase;
- note the high degree of symmetry of the gray regions;
- conversely, regions including ATM are visibly sensitive to:

 Δm^2_{31} [10⁻³ eV²]

- octant: definite shift from maximal mixing;
- **hierarchy**: relevant for the bound on θ_{13} ;
- **CP phase**: impact on θ_{13} bound;
- ⇒ present data suggest that future atmospheric experiments may provide complementary information to experiments using man-made neutrinos.

3

Atmospheric neutrinos: a laboratory for neutrino oscillations

Sensitivity to θ_{13}

- In principle, θ_{13} can be measured by observing the MSW & parametric resonances;
- in practice, the sensitivity is limited by:
 - *statistics*: at $E_{\nu} \sim 6$ GeV the ATM flux is already suppressed;
 - *background*: the $v_e \rightarrow v_e$ events strongly dilute the $v_\mu \rightarrow v_e$ signal; also resonance occur only for $v \text{ OR } \bar{v}$, not both;
 - *resolution*: need **precise determination** of resonance peak to measure θ_{13} ;
 - *timing*: Mton detectors still far in the future, but LBL experiments are starting **now**!
- ⇒ sensitivity to θ_{13} not competitive with dedicated LBL and reactor experiments.

NeuTel 2009, Venice, Italy, 11/03/2009

Sensitivity to the hierarchy: v_e

- θ₁₃ ≠ 0 ⇒resonant enhancement of ν (ν̄) oscillations for normal (inverted) hierarchy;
- mainly visible for high-energy: $E_{\nu} > 6 \text{ GeV}$;
- effect can be observed if:
 - detector has charge discrimination;
 - detector has **no** charge discrimination but number ν and $\bar{\nu}$ events **is different**;
- in WCD, at *multi-GeV* energies, we have $N_{\nu_e}^{\text{tot}}/N_{\bar{\nu}_e}^{\text{tot}} \approx 2.5$ for all CC interactions;
- however, this ratio is reduced in <u>single-ring</u>: $N_{\nu_e}^{1-\text{ring}}/N_{\overline{\nu}_e}^{1-\text{ring}} \approx 1.7 \Rightarrow \text{sensitivity decreased};$
- note that the ratio is enhanced in <u>multi-ring</u>
 ⇒ provide complementary information.

Sensitivity to the hierarchy: v_{μ}

- v_e channel (WCD only):
 - visible signal at high-energy;
 - wide region \Rightarrow no need for high-res;
- ν_{μ} channel (both WCD and MIND):
 - very strong signal at high-energy;
 - fast-oscillations \Rightarrow high-res **crucial**;
- opposite sign between ν and ν̄ ⇒ charge discrimination essential. However, for WCD multi-ring events can help;
- ⇒ Hierarchy: MIND better than WCD, but need very high resolution.

[Petcov & Schwetz, NPB 740 (2006) 1]

Sensitivity to the octant: v_e

- low-energy ($E_{\nu} < 1$ GeV) region:
 - $\theta_{13} = 0$: excess (deficit) of v_e flux for θ_{23} in the light (dark) side;
 - $\theta_{13} \neq 0$: lots of oscillations, but effect persist **on average**;
 - effect present for both ν **AND** $\bar{\nu}$;
- high-energy ($E_{\nu} > 3 \text{ GeV}$) region:
 - $\theta_{13} = 0$: no effect;
 - $\theta_{13} \neq 0$: MSW resonance produces an excess of v_e events; effect is smaller (larger) for θ_{23} in the light (dark) side;
 - resonance occurs only for ν OR $\bar{\nu}$.

Sensitivity to the octant: v_{μ}

- low-energy region (only WCD):
 - visible signal for both v_e and v_{μ} events, but v_e signal four times stronger;
 - same sign between ν and $\bar{\nu}$ ⇒ no need for charge discrimination;
 - good resolution helps but not crucial;
 - signal independent of $\theta_{13} \Rightarrow$ guaranteed;
- high-energy region (both WCD and MIND):
 - again, v_e signal stronger than v_{μ} ;
 - signal present only for ν or $\bar{\nu} \Rightarrow$ chargeblind signal *diluted* but *not canceled*;
 - visible signal only for large θ_{13} ;
- \Rightarrow Octant: WCD better than MIND.

Sensitivity to the CP phase

- $\theta_{13} \neq 0 \Rightarrow$ interference of Δm_{21}^2 and Δm_{31}^2 osc: • $\delta_e \simeq (\bar{r}\cos^2\theta_{23} - 1) P_{2\nu}(\Delta m_{21}^2, \theta_{12}) \quad [\Delta m_{21}^2 \text{ term}] \stackrel{\text{gr}}{\longrightarrow} + (\bar{r}\sin^2\theta_{23} - 1) P_{2\nu}(\Delta m_{31}^2, \theta_{13}) \quad [\theta_{13} \text{ term}]$
 - $-\bar{r}\sin\theta_{13}\sin 2\theta_{23} \operatorname{Re}(A_{ee}^*A_{\mu e}); \qquad [\delta_{CP} \operatorname{term}]$
- effect stronger for v_e , but present also for v_{μ} ;
- visible in the **intermediate-energy** region $1 \text{ GeV} < E_{\nu} < 3 \text{ GeV} \Rightarrow \text{bad for MIND};$
- opposite sign between *v* and *v* ⇒ charge discrimination important ⇒ bad for WCD;
- small structures ⇒ need good resolution to avoid dilution (but no danger of cancellation);
- affected by everything: θ₁₃, θ₂₃, octant, hierarchy, ... ⇒ effects hard to disentangle.

The high-energy region

- Structures in the oscillograms extend to very large energies (virually infinite);
- however, transition probabilities decrease as 1/E² ⇒ need very large detectors to see oscillations;
- these signatures can provide information on hiearchy and octant, however a large θ₁₃ is crucial;
- regions are quite large ⇒ no need for extremely good resolution;
- ν_{μ} signal suitable for investigation by neutrino telescopes, provided that energy threshold should be lowered to ~ 10 GeV or so.

Michele Maltoni <michele.maltoni@uam.es>

Comparison of the CERN-MEMPHYS and T2HK neutrino projects

•	Beam : $\begin{cases} \beta \mathbf{B}: \nu_e \text{ from } {}^{18}\text{Ne} (5 \text{ yr}) + \bar{\nu}_e \text{ from } {}^{6}\text{He} \\ \mathbf{SPL}: 4 \text{ MW SPL at CERN}, \nu_\mu (2 \text{ yr}) - \\ \mathbf{T2HK}: 4 \text{ MW Super Beam from Tokain} \end{cases}$	e (5 yr) @ $\gamma = 100$, $\langle E_{\nu} \rangle = 400$ MeV; - $\bar{\nu}_{\mu}$ (8 yr), $\langle E_{\nu} \rangle = 300$ MeV; , ν_{μ} (2 yr) + $\bar{\nu}_{\mu}$ (8 yr);
 Detector:		
• Baseline: $\begin{cases} \beta B \& SPL: 130 \text{ km (CERN} \rightarrow Fréjus); \\ T2HK: 295 \text{ km (Tokai} \rightarrow Kamioka); \end{cases}$		
*	simulation of LBL data: GLoBES software;	Fréjus
*	simulation of ATM data: same as SK, but with real detectors geometry.	Present Laboratory
	[Campagne, MM, Mezzetto & Schwetz, JHEP 04 (2007) 003]	MEMPHYS

Solving parameter degeneracies with atmospheric data

- β **B**: complete 8-fold degeneracy due to:
 - lack of precise information on Δm_{31}^2 and θ_{23} (usually provided by ν_{μ} disappearance);
 - spectral information not efficient enough to resolve the *intrinsic* degeneracy;
- SPL & T2HK: only 4-fold degeneracy appears if spectrum information is used;
- \Rightarrow all degeneracies disappear after inclusion of ATM data.

Resolving degeneracies in T2HK

- sensitivity to the octant (blue lines):
 - given by **sub-GeV** events for $\theta_{13} \approx 0$;
 - given by **multi-GeV** events for $\theta_{13} \gtrsim 0.04$;
 - only mildly dependent on $\delta_{\text{\tiny CP}}$;
- sensitivity to the hierarchy (red lines):
 - dominated by **multi-GeV** for $\theta_{23} > 45^{\circ}$;
 - **sub-GeV** events relevant if $\theta_{23} < 45^{\circ}$;
 - strongly depends on $\delta_{\mbox{\tiny CP}}$ in the latter case;
- sensitivity to **octant+hierarchy** (gray areas):
 - mostly given by "sum" of blue and red lines;
 - $\delta_{\rm \tiny CP}$ interference terms may be relevant.

[Huber, MM & Schwetz, PRD 71 (2005) 053006]

NeuTel 2009, Venice, Italy, 11/03/2009

Determining the mass hierarchy and the octant

- Sensitivity to hierarchy of LBL data alone is quite poor due to parameter degeneracies;
- with ATM data included, the sensitivity to the hierarchy for the MEMPHYS project (both βB and SPL setup) is comparable to that of T2HK;
- sensitivity to the octant almost completely dominated by ATM data, with only minor contributions from LBL.

III. Results: synergies with long-baseline experiments

Neutrino telescopes: mass hierarchy @ IceCUBE Deep-Core

- Idea: have part of the detector with incresed photo-coverage, and use the rest as veto;
- Goal: lower the energy threshold as much as possible;
- Why: gain sensitivity to neutrino parameters (*e.g.*, mass hierarchy), with <u>huge</u> statistics.
- \Rightarrow Result promising, but needs careful study. What about other telescopes (e.g., ANTARES)?

- Atmospheric data are always present in any long-baseline neutrino detector;
- ATM and LBL data provide **complementary** information on neutrino parameters:
 - LBL data will accurately determine $|\Delta m_{31}^2|$ and θ_{23} , and measure/bound θ_{13} ;
 - ATM data will provide information on the mass hierarchy and on the octant.
- sensitivity to the octant: WCD better than MIND (do not rely on size of θ_{13});
- sensitivity to the hierarchy:
 - MIND very promising but need high detector resolution;
 - charge discrimination very important, however combination of *different detectors types* (charge-blind but with different $\nu/\bar{\nu}$ composition) may do the job;
- ν telescopes: compensate low- $P_{\alpha\beta}$ at high- E_{ν} with huge statistics \Rightarrow worth a look.

⇒ [Gonzalez-Garcia, MM & Smirnov, PRD 70 (2004) 093005, hep-ph/0408170]
 [Huber, MM & Schwetz, PRD 71 (2005) 053006, hep-ph/0501037]
 [Campagne, MM, Mezzetto & Schwetz, JHEP 04 (2007) 003, hep-ph/0603172]
 [Akhmedov, MM & Smirnov, JHEP 05 (2007) 077, hep-ph/0612285]
 [Gonzalez-Garcia & MM, PREP 460 (2008) 1, arXiv:0704.1800]

Eventograms

• Consider a bin centered at (Θ_{ν}, E_{ν}) with size $\Delta \Theta_{\nu}$ and $\Delta \ln E_{\nu}$. We can write:

 $N_{\rm ex} \simeq \rho_{\rm ex}(\Theta_{\nu}, E_{\nu}) \Delta S$, $N_{\rm th} \simeq \rho_{\rm th}(\Theta_{\nu}, E_{\nu}) \Delta S$, $\Delta S \equiv \Delta \Theta_{\nu} \cdot \Delta \ln E_{\nu}$;

• the contribution of this bin to the total χ^2 is:

$$\Delta \chi^{2} = (N_{\text{th}} - N_{\text{ex}})^{2} / N_{\text{ex}} = (\rho_{\text{th}} - \rho_{\text{ex}})^{2} / \rho_{\text{ex}} \Delta S \qquad [Gauss],$$

$$\Delta \chi^{2} = 2[N_{\text{th}} - N_{\text{ex}} + N_{\text{ex}} \ln(N_{\text{ex}}/N_{\text{th}})] = [\rho_{\text{th}} - \rho_{\text{ex}} + \rho_{\text{ex}} \ln(\rho_{\text{ex}}/\rho_{\text{th}})] \Delta S \qquad [Poisson];$$

• in both cases we can define a χ^2 density function:

$$\xi^2(\Theta_{\nu}, E_{\nu}) \equiv \lim_{\Delta S \to 0} \frac{\Delta \chi^2}{\Delta S}$$
 and $\xi \equiv \operatorname{sgn}(\rho_{\text{ex}} - \rho_{\text{th}}) \sqrt{\xi^2}$

• the function ξ shows which regions in the (Θ_{ν}, E_{ν}) plane mostly contribute to the χ^2 :

$$\chi^2 = \iint \xi^2(\Theta_{\nu}, E_{\nu}) \, d\Theta_{\nu} \, d\ln E_{\nu};$$

• in the following we will present isocontours of ξ ("*eventograms*").

Octant discrimination: pure Δm_{21}^2 effects

• Excess of *e*-like events for $\theta_{13} = 0$:

$$\delta_e \equiv \frac{N_e}{N_e^0} - 1 = \left(\bar{r}\cos^2\theta_{23} - 1\right) P_{2\nu}(\Delta m_{21}^2, \,\theta_{12})$$

with $\bar{r} \equiv \Phi^0_\mu / \Phi^0_e$;

- for **sub-GeV** we have $\bar{r} \approx 2$ so that:
 - for $\theta_{23} \approx 45^{\circ} \delta_{e}$ vanish;
 - $δ_e$ change sign between light and dark side ⇒ octant discrimination;
- for **multi-GeV** effects suppressed by $\Delta m_{21}^2/E_{\nu}$;
- present data: excess in *e*-like sub-GeV events ⇒ preference for light side.

Octant discrimination: θ_{13} effects

• For $\theta_{13} \neq 0$:

- $$\begin{split} \delta_{e} &\simeq (\bar{r}\cos^{2}\theta_{23} 1) P_{2\nu}(\Delta m_{21}^{2}, \theta_{12}) & [\Delta m_{21}^{2} \text{ term}] \\ &+ (\bar{r}\sin^{2}\theta_{23} 1) P_{2\nu}(\Delta m_{31}^{2}, \theta_{13}) & [\theta_{13} \text{ term}] \\ &- \bar{r}\sin\theta_{13}\sin2\theta_{23} \operatorname{Re}(A_{ee}^{*}A_{\mu e}); & [\delta_{CP} \text{ term}] \end{split}$$
- for **sub-GeV** effect of Δm_{21}^2 is diluted by θ_{13} ;
- for multi-GeV resonance in P_{2ν}(Δm²₃₁, θ₁₃) ⇒ enhancement of ν (ν̄) oscillations for normal (inverted) hierarchy;
- more ν than ν
 events ⇒ sensitivity enhancement is larger for normal hierarchy;
- ⇒ for small (large) θ_{13} the sensitivity to the **octant** is worse (better) than for $\theta_{13} = 0$.

