Measurement of CC interactions produced by ⁸B solar neutrinos at SNO

Art McDonald for the **SNO** Scientific Collaboration *Venice, July 24, 2001*

The SNO Collaboration

S. Gil, J. Heise, R.L. Helmer, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng, Y.I. Tserkovnyak, C.E. Waltham University of British Columbia

> J. Boger, R.L. Hahn, J.K. Rowley, M. Yeh Brookhaven National Laboratory

R.C. Allen, G. Bühler, H.H. Chen* University of California at Irvine

I. Blevis, F. Dalnoki-Veress, J. Farine, D.R. Grant, C.K. Hargrove, I. Levine, K. McFarlane, H. Mes, C. Mifflin, A.J. Noble, V.M. Novikov, M. O'Neill, M. Shatkay, D. Sinclair, N. Starinsky **Carleton University**

> G. Milton, B. Sur Chalk River Laboratories

T.C. Andersen, K. Cameron, M.C. Chon, P. Jagam, J. Karn, J. Law, I.T. Lawson, R.W. Ollerhead, J.J. Simpson, N. Tagg, J.-X. Wang University of Guelph

J. Bigu, J.H.M. Cowan, E.D. Hallman, R.U. Haq, J. Hewett, J.G. Hykawy, G. Jonkmans, S. Luoma, A. Roberge, E. Saettler, M.H. Schwendener, H. Seifert, R. Tafirout, C.J. Virtue Laurentian University

Y.D. Chan, X. Chen, K.T. Lesko, A.D. Marino, E.B. Norman, C.E. Okada, A.W.P. Poon, A. Schuelke, A.R. Smith, R.G. Stokstad Lawrence Berkeley National Lab

T.J. Bowles, S.J. Brice, M.R. Dragowsky, M.M. Fowler, A. Goldschmidt, A. Hamer, A. Hime, K. Kirch, G.G. Miller, J.B. Wilhelmy, J.M. Wouters Los Alamos National Laboratory

J.D. Anglin, M. Bercovitch, W.F. Davidson, R.S. Storey* National Research Council of Canada

J.C. Barton, S. Biller, R.A. Black, R.J. Boardman, M.G. Bowler,
J. Cameron, B. Cleveland, X. Dai, G. Doucas, J. Dunmore, H. Fergani,
A.P. Ferraris, K. Frame, H. Heron, N.A. Jelley, A.B. Knox, M. Lay,
W. Locke, J. Lyon, S. Majerus, N. McCauley, G. McGregor, M.
Moorhead, M. Omori, N.W. Tanner, R.K. Taplin, P. Thornewell,
M. Thorman, P.T. Trent, D.L. Wark, N. West, J. Wilson
University of Oxford

E.W. Beier, D.F. Cowen, E.D. Frank, W. Frati, W.J. Heintzelman, P.T. Keener, J.R. Klein, C.C.M. Kyba, D.S. McDonald, M.S. Neubauer, F.M. Newcomer, S.M. Oser, V.L. Rusu, R.G. Van de Water, R. Van Berg, P. Wittich University of Pennsylvania

> R. Kouzes, M.M. Lowry **Princeton University**

E.Bonvin, M.G. Boulay, Y. Dai, M. Chen, E.T.H. Clifford, , F.A. Duncan, E.D. Earle,H.C. Evans, G.T. Ewan, R.J. Ford, A.L. Hallin, P.J. Harvey, R. Heaton, J.D. Hepburn, C. Jillings, H.W. Lee, J.R. Leslie, H.B. Mak, A.B. MacDonald,W. McLatchie, B.A. Moffat, B.C. Robertson, T.J. Radcliffe, P. Skensved Queen's University

Q.R. Ahmad, M.C. Browne, T.V. Bullard, T.H. Burritt, G.A. Cox, P.J. Doe,C.A. Duba, S.R. Elliott, J.V. Germani, A.A. Hamian, R. Hazama, K.M. Heeger, M. Howe, R. MeijerDrees, J.L. Orrell, R.G.H. Robertson,K.K. Schaffer, M.W.E. Smith, T.D. Steiger, J.F. Wilkerson University of Washington

*Deceased

Physics Program

Solar Neutrinos

- → Electron Neutrino Flux
- \rightarrow Total Neutrino Flux
- → Charged Current Energy Spectrum
- \rightarrow Day/Night effects
- \rightarrow Seasonal variations

Atmospheric Neutrinos & Muons

- \rightarrow Downward going cosmic muon flux
- \rightarrow Upward going muons and angular dependence
- Supernova Watch
- Antineutrinos, proton decay...

Solar Neutrino Problem

Either

Solar Models are Incomplete or Incorrect

Or

Neutrinos undergo Flavor Changing Oscillations or other new physics.

Muon Flux VS Detector Depth

The SNO Detector during Construction

n Reactions in SNO

$$\mathbf{cc} \ \mathbf{n}_e + \mathbf{d} \Rightarrow \mathbf{p} + \mathbf{p} + \mathbf{e}^{\mathsf{T}}$$

Good measurement of m_e energy spectrum
Weak directional sensitivity µ 1-1/3cos(q)
m_e only.

NC
$$\boldsymbol{n}_x + d \Rightarrow p + n + \boldsymbol{n}_x$$

Measure total ⁸B m flux from the sun.
Equal cross section for all m types

$$i_x + e^- \Rightarrow i_x + e^-$$

- Low Statistics
- Mainly sensitive to **n**_e, less to **n**_m and **n**_t
- Strong directional sensitivity

What can SNO do?

1) Measure total flux of solar neutrinos vs the pure V_{e} flux

Charged-Current to Neutral Current ratio is a direct signature for neutrino flavor change

$$\frac{\text{CC}}{\text{NC}} = \frac{\boldsymbol{n}_{\text{e}}}{\boldsymbol{n}_{\text{e}} + \boldsymbol{n}_{m} + \boldsymbol{n}_{t}}$$

CC/ES can also show flavor change with lower sensitivity

$$\frac{\text{CC}}{\text{ES}} = \frac{\boldsymbol{n}_{e}}{\boldsymbol{n}_{e} + 0.14 (\boldsymbol{n}_{m} + \boldsymbol{n}_{t})}$$

Smoking Guns for Neutrino Oscillations

SNO Run Sequence

The Three Phases	Neutron Detection Method	
<u>Pure D₂O</u> Good CC sensitivity 	Capture on D <i>n</i> + d	
Added Salt in D ₂ O	Capture on Cl	
 Enhanced NC sensitivity 	n + ³⁵ Cl	

Neutral Current Detectors

 ³He proportional counters in the D₂O

Capture on ³He

 $n + {}^{3}\text{He} \otimes p + t$

Event by event separation of CC and NC events

Signals in SNO

What can SNO do?

2) Examine the Charged- Current Energy Spectrum

Charged-current spectrum is sensitive to shape distortions

Calibration Overview

Electronics Calibration

Electronic pulsers

Optical Calibration

Pulsed laser ~2ns (337, 365, 386, 420, 500 and 620 nm)

 \rightarrow Attenuation, Reflection, Scattering, PMT relative QE

Energy Calibration

• ¹⁶ N	\rightarrow	6.13 MeV γ's
• p,T	\rightarrow	19.8 MeV γ's
 neutrons 	\rightarrow	6.25 MeV γ's

• ⁸Li \rightarrow β spectrum. Endpoint ~14 MeV

Low Energy Backgrounds Encapsulated Th and U sources

SNO Energy Calibrations

SNO Event Reconstruction

Reconstruction position of ⁸Li events

Reconstruction Resolution

Calibration

Electronics

- Electronic Pulsers, Pulsed Light Sources
- 0.25 pe Threshold
- Multiplicity Trigger 18
 Nhit 100% efficiency by 25 (~3 MeV)
- See NIM A449 (2000)

• **CMOS Feature** Discovered with a **Time Since Last Hit Dependence**

Now Corrected

N16 source at Z=-400cm

Low Rate vs High Rate Data & Corrections

Angular Resolution

Background Radioactivity

Sources of Activity in SNO Water Systems

Water Purification and Assay

MnOx

HTiO

- ²²⁴Ra, ²²⁶Ra extraction decay products counted
 - in electrostatic counters

- \rightarrow Purification
- \rightarrow Assay of ²²⁴Ra.²²⁶Ra

Th, Ra, & Pb extraction chemically stripped and counted with $\beta\alpha$ counter

 \rightarrow Purification \rightarrow Assay of ²²⁴Ra,²²⁶Ra,²²⁸Th

Vacuum & Membrane Radon removal Lucas Cells **De-gassing**

- \rightarrow Purification \rightarrow Assay of ²²²Rn
- Reverse Osmosis conc. collection \rightarrow Purification liquid scintillator

Ion Exchange & Ultrafiltration...

- \rightarrow Assay
 - \rightarrow Purification

SNO Water Assays H₂O

Targets are set to reduce β - γ events reconstructing inside 6m

SNO Water Assays D₂O

Targets for D₂O represent a 5% background from $d+\gamma \rightarrow n+p$

Acrylic Vessel Backgrounds

- Direct Counting and NAA
- Encapsulated U, Th sources
- Direct Observation in Cerenkov
- Small Neutron background
- Activities assayed to be <10% Targets ~0.2 ppt</p>
- Small Tails into Cerenkov Signals

Therefore the service of the servic

 Direct Counting of Materials & M/C
 "Hot" Encapsulated U & Th Sources, ¹⁶N-γ's

• Small Tails into Cerenkov Signals

C Limits <550cm <1/2%

High Energy Gammas

- From PMTs & Rock Wall - (α,γ), (α,nγ),... Empirical Estimates from Cavity
 - Measures
- Direct Observation, ¹⁶N Calibration γ 's
- Small Cerenkov Signals
- •<2% inside 550 cm

- Data Period:
- Life Time:
- Data Set 1:

• Data Set 2:

Data Sets

- Nov 2, 1999 → Jan 15, 2001
- 240.9 days
- Analysis Data
- → Data set used to develop the data analysis procedures. ~166 days live time.
- Blind Data Set
 → Signal region was not looked at until all analyses complete and unified. ~75 days live time.

No statistically significant differences were found between the blind and development data sets.

Signal Extraction & Background and Error Determination Tight Fiducial Volume Signal Extraction & Background and Error Determination Variable Fiducial Volume

A Neutrino Event

Instrumental Backgrounds

A "Neck" Event

Note Neck Tubes Fired

<u>An Electronic Pickup Event</u>

Instrumental Background Cuts

Comparison between two Instrumental Background Removal Techniques

How do we know this worked?

Signal loss measured with calibration sources

Contamination measured with independent cuts

Extracting the Signal

- Energy threshold set to 6.75 MeV to remove low energy radioactivity backgrounds.
- Goal is to resolve the data into contributions from the CC, ES and Neutrons.
- For each, Probability Density Functions are derived of:
 - The energy spectrum; T
 - The direction wrt to the sun; $\cos \Theta_{sun}$
 - The volume weighted radial distribution $(R/R_{AV})^3$
- Combined Maximum Likelihood used to extract individual components

$$\begin{cases} CC = 975.4 \pm 39.7 \text{ events} \\ ES = 106.1 \pm 15.2 \text{ events} \\ neutrons = 87.5 \pm 24.7 \text{ events} \end{cases}$$

Signals in SNO

Distributions

<u>Radial Distribution</u> Nhit ³ 65 (very small neutrons, low energy backgrounds)

Edge of AV is quite sharp.

➡ Events from D₂O clearly identified.

Direction of Events with respect to the SUN

Charged Current Energy Spectrum

CC spectrum derived from fit *without* constraint on shape of ⁸B spectrum CC spectrum normalized to predicted ⁸B spectrum. → no evidence for shape distortion.

Systematic Errors for Fluxes

Error Source	CC error (%)	ES error (%)
Energy scale	-5.2, +6.1	-3.5, +5.4
Energy resolution	± 0.5	± 0.3
Non-linearity	± 0.5	± 0.4
Vertex shift	±3.1	±3.3
Vertex resolution	±0.7	± 0.4
Angular resolution	±0.5	±2.2
High Energy γ's	-0.8, +0.0	-1.9, +0.0
Low energy background	-0.2, +0.0	-0.2, +0.0
Instrumental background	-0.2, +0.0	-0.6, +0.0
Trigger efficiency	0.0	0.0
Live time	±0.1	±0.1
Cut acceptance	-0.6, +0.7	-0.6, +0.7
Earth orbit eccentricity	±0.1	±0.2
¹⁷ O, ¹⁸ O	0.0	0.0
Experimental uncertainty	-6.2, +7.0	-5.7, +6.8
Cross-section	3.0	0.5
Solar Model	-16, +20	-16, +20

Charged Current and Elastic Scattering Fluxes

for No Oscillation Hypothesis

• Absolute Flux (assuming pure **m** for ES, in 10⁶ cm⁻² s⁻¹)

 $\mathbf{F}^{CC}(^{8}\mathbf{B}) = \mathbf{1.75} \pm \mathbf{0.07} + \mathbf{0.16} + \mathbf{0.14} + \mathbf{0.16} + \mathbf{$

Super-Kamiokande finds*

 $\mathbf{F}^{\text{ES}} (^{8}\text{B}) = 2.32 \pm 0.03 \qquad \begin{array}{c} +0.08 \\ -0.07 \\ (\text{stat}) \quad (\text{sys.}) \end{array}$

*S. Fukuda, et al., hep-ex/0103032

Charged Current vs Elastic Scattering Rates

• **SNO:** CC vs ES (Units $10^6 \text{ cm}^{-2} \text{ s}^{-1}$)

 $\Phi^{\text{ES}}_{SN\bar{O}} \Phi^{\text{CC}}_{S\bar{N}} \partial.64 \pm 0.40 \implies 1.6\sigma \text{ effect}$

Neutrino Oscillations

The CC result from SNO combined with the ES result from SK gives clear evidence for the oscillation of electron- neutrinos to mu- and/or tau- neutrinos (or anti-neutrinos).

Comparison with Standard Solar Model: BPB01

• Total Flux

 Φ_{SNO} (⁸B) = 5.44 ±0.99 × 10⁶ cm⁻²s⁻¹

 $\Phi_{\rm SSM}$ (⁸B) = 5.01 $^{+1.01}_{-0.81}$ × 10⁶ cm⁻²s⁻¹

• CC Flux (v_e) Relative to BPB01

 R^{CC} (⁸B) = 0.347 ± 0.029

Constraints on Oscillation Scenarios

 If oscillation with mixing solely to a sterile neutrino is occurring the SNO CC - derived ⁸B flux above a threshold of 6.75 MeV will be essentially identical with the integrated Super-Kamiokande ES - derived ⁸B flux above a threshold of 8.6 MeV.

→ Correcting for the ES threshold the flux difference is 0.53 ± 0.17 , or 3.1 σ

 \rightarrow Therefore the hypothesis of oscillations solely to sterile neutrinos is excluded at the 3.1 s level.

Particle Data Group 2000

MSW Effects + Vacuum Oscillations for Solar Neutrinos

Fogli et al. hep-ph/0106247

Post - SNO

Cosmological Implications

These results plus analyses suggest:

Limits on v_e mass give: Assuming the hypothesis of $v_{\mu} \leftrightarrow v_{\tau}$ oscillations in atmospheric neutrinos:

 $(\Delta m_{e\mu})^2 \leq 10^{-3} \text{ eV}^2 \text{ or}$ $(\Delta m_{e\tau})^2 \leq 10^{-3} \text{ eV}^2$

 $m(v_e) < 2.8 eV$

 $(\Delta m_{\mu\tau})^2 \approx 3 \times 10^{-3} \text{ eV}^2$

 Σ neutrino masses:

 $0.05 < \sum_{e\mu\tau} < 8.4 \ eV$

→ limit on mass fraction of neutrinos in the universe:

 $0.001 < \Omega_v < 0.18$

Physics Program

Solar Neutrinos

- → Electron Neutrino Flux
- \rightarrow Total Neutrino Flux
- → Charged Current Energy Spectrum
- → Day/Night effects
- \rightarrow Seasonal variations

Atmospheric Neutrinos & Muons

- \rightarrow Downward going cosmic muon flux
- \rightarrow Upward going muons and angular dependence
- Supernova Watch
- Antineutrinos, proton decay...

SNO Cosmic Ray Muon Event (Charge)

SNO Atmospheric Neutrino Candidate

Through-Going Muon Zenith Angle Distribution (PRELIMINARY)

SNO and Supernovae

SN1987A

Estimates of supernovae in our galaxy range from 1 in 10 years to 1 in 30 years.

- The SNO Data Acquisition System has a 100 kHz burst mode.
- If there is a supernova during it's lifetime, SNO will:
 - Measure the initial ν_e burst (will detect ~1000 events at 10kpc).
 - Measure all types of neutrinos via neutral current interaction
 - Measure the energy spectrum of ν_e .

Supernova Neutrino Luminosity Spectrum

Using the model of Burrows et al. (1992)

Conclusions

- The SNO detector is taking very nice data. Phase I is complete.
- The CC rate is low compared to the ES rates as measured by SNO and SK. This provides strong evidence for m_e oscillations, independent of solar models.
- Oscillation solely to sterile neutrinos is strongly disfavored.
- These results provide the first direct indication of solar neutrinos of type other than **m**_e.
- These results provide the first measurement of the total flux of active ⁸B neutrinos from the Sun. The flux agrees well with the SSM predictions.

Outlook

• Analysis tools all in place. Work will continue on other topics and we plan to release other papers soon. E.g..

- \rightarrow Day/night and seasonal effects
- \rightarrow NC rate in pure D₂O phase
- \rightarrow Muons, Atmospheric neutrinos...
- \rightarrow Supernova Watch
- Phase II with NaCl in detector is just starting. The plan is to run in that configuration for 8 months to a year.
- Water radioactivity numbers are low. This will be maintained during the NaCl phase.

Phase II Underway!!

NaCl Injected into D₂O. Calibrations in Progress.

CFI PROPOSAL: INTERNATIONAL UNDERGROUND SCIENCE FACILITY AT SNO

\$30 M FOR: - DEVELOPMENT SPACE FOR NEW EXPERIMENTS

- SPACE FOR PICASSO + OTHER INTERNATIONAL PROJECTS

- RESEARCH & DEVELOPMENT LABORATORY ON SURFACE

