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Figure 7: Predictions for |mee| assuming a hierarchical (fig. 7a) and inverted (fig. 7b) neutrino spec-
trum. In fig. 7c we update the upper bound on the mass of quasi-degenerate neutrinos implied by 0ν2β
searches. The factor h ≈ 1 parameterizes the uncertainty in the nuclear matrix element (see sect.
2.1). In fig. 7d we plot the 99% CL range for mee as function of the lightest neutrino mass, thereby
covering all spectra. The darker regions show how the mee range would shrink if the present best-fit
values of oscillation parameters were confirmed with negligible error.
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Figure 6: 99% CL expected ranges for the parameters mcosmo = m1 + m2 + m3 probed by cosmology
(fig. 6a) and mνe ≡ (m·m†)1/2

ee probed by β-decay (fig. 6b) as function of the lightest neutrino mass. The
darker lines show how the ranges would shrink if the present best-fit values of oscillation parameters
were confirmed with negligible error.

‘standard’ SK analysis). The statistically insignificant hint for a θ13 > 0 in fig. 1 is mainly due to a
small deficit of events in CHOOZ data at lowest energies.

Other effects? Data show no significant hint for new effects beyond three massive neutrinos. For
example fig. 3a shows a global fit performed without assuming that neutrinos and anti-neutrinos
have the same atmospheric mass splitting and mixing angle. We see that the best-fit lies close to
the CPT-conserving limit, and that the atmospheric mass splitting in anti-neutrinos is poorly deter-
mined. Nevertheless, this is enough to strongly disfavor a CPT-violating interpretation of the LSND
anomaly [19]. Near-future long-baseline experiments will probably study only ν rather than ν̄.

3 Non-oscillation experiments

In this section we discuss non-oscillation experiments and consider the 3 non-oscillation parameters
mentioned in the introduction. Making reference to experimental sensitivities, the 3 probes should
be ordered as follows: cosmology, 0ν2β and finally β decay. Ordering them according to reliability
would presumably result into the reverse list: cosmological results are based on untested assumptions,
and 0ν2β suffers from severe uncertainties in the nuclear matrix elements. Even more, there is an
interesting claim that the 0ν2β transition has been detected [12] (see section 3.3 for some remarks),
there is a persisting anomaly in TROITSK β decay, and even in cosmology, there is one (weak) claim
for a positive effect. None of these hints can be considered as a discovery of neutrino masses. Several
existing or planned experiments will lead to progress in a few years.

In this section, we assume three massive Majorana neutrinos and study the ranges of neutrino
mass signals expected on the basis of oscillation data, updating and extending the results of [30].
Our inferences are summarized in table 1 and obtained by marginalizing the full joint probability
distribution for the oscillation parameters, using the latest results discussed in the previous sections.
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• SUPERBEAMS:  (0.4 to 4 MW)

• Counting Expts (3 ways)

• Spectrum Measurement

• NEW NEUTRINO BEAMS

• Neutrino Factory (muon storage ring)

• High Gamma Beta Beams
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using unitarity of U.
Use ∆ij = δm2

ijL/4E = 1.27δm2
ijL/E

Pµ→e =
∣∣ 2U∗µ3Ue3 sin∆31e−i∆32 + 2U∗µ2Ue2 sin∆21

∣∣2
Square of Atmospheric+Solar amplitude:

U∗µ3Ue3 = s23s13c13e∓iδ for ν and ν̄:

Approx. U∗µ2Ue2 ≈ c23c13s12c12 +O(s13):

Pµ→e ≈
∣∣ 2s23s13c13 sin∆31e−i(∆32±δ) + 2c23c13s12c12 sin∆21

∣∣2
Interference term different for ν and ν̄: CP violation !!!
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Matter Effects:
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Matter effects are IMPORTANT when sin(∆∓ aL) $= (∆∓ aL).

Matter Effects important for NuMI-OFF-Axis ( 800 km), less so for JParc (295 km).
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Figure 1: Shown are (a) the neutrino mass-squared eigenvalues in matter and (b) the ratio

Jm/Jv, for the parameters listed in eq. (15), as a function of the neutrino energy. Positive

energies correspond to neutrinos, and negative energies correspond to anti-neutrinos (vice

versa for inverted δm2’s).

produces a large value of Jm. A quantitative view of the impossibility of matter to produce

a truly large amplitude results when the explicit expression for Jv in eq. (5) is substituted

into eq. (8). The result is

P !T
m = 2 cos θv

31 sin(δv)

[
[(sin 2θ21δm2

21)(sin 2θ32δm2
32)(sin 2θ31δm2

31)]v
[δm2

21 δm2
32 δm2

31]m

]
sin ∆m

21 sin ∆m
32 sin ∆m

31 .

(17)

As seen from eqs. (10) and (13), at either resonance the bracketed factor in this equation does

not become large. What the resonance manages to do is to cancel the small vacuum value of

sin 2θv
21 or sin 2θv

31 in the amplitude (16Jv) of the T-violating oscillation. But accompanying

even this cancellation is a negative consequence for the associated oscillation lengths, to

which we now turn.

3 Baseline Limitations

A significant enhancement of T-violating oscillation amplitudes requires a small-angle reso-

nance. The conditions for this are either

δm2
21|m ! δm2

21|v or δm2
32|m ! δm2

21|v . (18)
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FIG. 6: Sensitivity to the sign(∆m2
31)-extraction at the 95% CL within the three reference setups

explored in the present study. The labels L, M and S correspond to the Large, Medium and

Small experimental setups explored in this study, respectively. The dashed black curve is obtained

from Eq. (7) setting 〈sin δ〉− = −1 (〈sin δ〉+ = +1) for the normal (inverted) hierarchy. This is the

bound that would be obtained with infinite statistics and in the absence of backgrounds.

are obviously crucial to resolve the hierarchy of the neutrino mass spectrum9. The sensitivity

to the measurement of the sign of the atmospheric mass difference is expected to be better

when the sign of sin δ is negative: in the case of the Medium experimental setup, the

sensitivity to the sign (∆m2
31)-extraction is lost for positive values of sin δ. We show as well

in Fig. (6) the theoretical limit on the sign(∆m2
31)-extraction, which acts as a rigorous upper

bound on the experimental sensitivity curves. A possible way to resolve the fake solutions

associated to the sign of the atmospheric mass difference would be to combine the data from

the proposed NuMI 10 km off-axis and T2K experiments [20, 25]. The complementarity of

the NuMI and T2K experiments can be explicitly shown by exploiting the identity given in

9 Recently, new approaches for determining the type of hierarchy have been proposed [28] by exploiting other

neutrino oscillations channels, such as muon neutrino disappearance, and require very precise neutrino

oscillation measurements.
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JHF neutrino vs. NuMI neutrino
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FIG. 1. Allowed range of P (νµ → νe) for JHF verses P (νµ → νe) for NuMI, which are referred
to as “pencils” in the text, are delimited by thick solid (dashed) lines for positive (negative)
∆m2

13 for the energies (EJHF /GeV, ENuMI/GeV) = (a) (0.6,1.5), (oscillation maximum for both

experiments) (b) (0.6,2.0), (c) (0.8,1.5) and (d) (0.8,2.0). In the same plot, the positions for some
representative values of the fractional variation across the width of the “pencil” of θ ≡ sin θ13, ∆θ/θ

[%], indicated by numbers, are shown by thin solid arcs. Inside each allowed region, trajectories
corresponding to sin2 2θ13 = 0.02, 0.05 and 0.09 are plotted by dotted lines. The mixing parameters
are fixed to be |∆m2

13| = 2.5×10−3 eV2, sin2 2θ23 = 1.0, ∆m2
12 = +7×10−5 eV2 and sin2 2θ12 = 0.85

whereas θ13 and δ are assumed to be unknown. The electron density is fixed to be Yeρ = 1.15 and
1.4g cm−3 for JHF and NuMI experiment, respectively. For JHF and NuMI both anti-neutrinos,
the roles of ∆m2

13 > 0 and ∆m2
13 < 0 are interchanged.
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(a) (b)

FIG. 8: The same as Fig. (7) but for scenario II (ScII), with a proton driver. The number of protons on target per year in the
proton driver scenario is 25 × 1020. We have considered 6 years of neutrino running and 4 years of antineutrino running in
the proposed NOνA far detector and 3 years of neutrino running and 1 year of antineutrino running in the near detector. The
total number of years of running would be 10.

A. Dependence on |∆m2
31|

Throughout this work we have been assuming a fixed value for |∆m2
31| = 2.40 × 10−3 eV2. However, the value of

this parameter is known currently with a precision of ∼ 30% at 90% C.L. [7, 9]. In addition, from Eq. (2.2), we can see
that the value of the asymmetry increases monotonically as the vaccum oscillation phase increases, and therefore the
asymmetry is larger for larger |∆m2

31|. This correspondingly means better sensitivity to the type of mass hierarchy
the larger the atmospheric mass square difference is. Hence, although a precision at the level of ∼ 5% is expected
to be achieved by the time this experiment could turn on [27, 75], it is very important to investigate the effect of a
different value for |∆m2

31| on the results presented above.
We have performed such a study, in a similar way to Ref. [60]. In Fig. 10 the sensitivity to the sign of ∆m2

31
for different values of |∆m2

31| = (2.0; 2.4; 3.0) × 10−3eV2. We have assumed ScI with a 25 kton water-Čerenkov
detector at 200 km. We depict the fraction of δ for which the type of neutrino mass hierarchy can be determined as a
function of sin2 2θ13, for three different values of |∆m2

31| = 2.0×10−3eV2 (dotted line); 2.4×10−3eV2 (solid line) and
3.0× 10−3eV2 (dashed line). As anticipated, the larger the value of |∆m2

31|, the better the sensitivity to sgn(∆m2
31).

As for comparison, for a value of |∆m2
31| = 2.0 × 10−3eV2, the results are only slightly better than what is achieved

with just the far NOνA detector if |∆m2
31| = 2.4 × 10−3eV2. Conversely, if |∆m2

31| = 3.0 × 10−3eV2, the sensitivity
is at the level of that for |∆m2

31| = 2.4 × 10−3eV2 with four times more statistics, i.e., a 100 kton water-Čerenkov
detector instead. On the other hand, let us point out that since the CHOOZ [17] bound is weaker for small values of
|∆m2

31|, the loss in range for θ13 is not as large as one would näıvely think from Fig. 10.
Hence, if future atmospheric and long-baseline experiments determine that the actual value of |∆m2

31| happens to be
smaller than the one assumed for this work, a different solution must be considered in order to achieve a comparable
sensitivity. A possible solution would be to adopt a larger L/E, which could be accomplished either by considering
longer baselines or larger off-axis distances, i.e., smaller energies. Another possibility would be to consider running
with the low-energy configuration of the NuMI beam. Nevertheless, these modified experimental setups would imply
a reduction of the neutrino flux at the detectors, which would require a detailed analysis to evaluate their actual
capabilities. On top of this, if θ13 is very small and |∆m2

31| is also small, then the construction of the proton driver
and possibly a longer neutrino running would be necessary.

with Proton Driver



Spectrum Measurements:

• On Axis

• Off Axis - 2nd Peak  



• 28 GeV protons. 1 MW beam power. Horn focussed

• 500 kT water Cherenkov detector.  

• baseline > 2500 km.  WIPP, Henderson, Homestake

• We have proven by 3 years of work that this can be done.
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BNL Wide Band. Proton Energy = 28 GeV
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Figure 6.7: Wide band horn focused muon neutrino spectrum for 28 GeV protons on a graphite
target.
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Figure 6.8: Wide band horn focused muon antineutrino spectrum for 28 GeV protons on a
graphite target.

97 October 8, 2004

Numerous Approaches to Studying νµ↔ νe Transitions:

• Off Axis - Narrow Band Beams νµ → νe (T2K and NOvA)

• On Axis - Broadband Beam νµ → νe (BNL 2 HSK)

• Neutrino Factory νe → νµ

• Beta Beams νe → νµ

On Axis Beams:

– Typeset by FoilTEX – 4

FNAL

Henderson

Brookhaven Proposal



2450 km, 500 kt, 1MW, 5+5 yrs, 95 %  CL  

where
√

Patm = sin θ23 sin 2θ13 {sin∆31 ⇒ sin(∆31∓aL)
(∆31∓aL) ∆31}

and
√

Psol = cos θ13 cos θ23 sin 2θ12 {sin∆21 ⇒ sin(aL)
(aL) ∆21}

2σ

Eν Window

Hierarchy resolved for sin2 2θ13 > 0.008 for all δ.
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Some recent progress: detector in Korea Some recent progress: detector in Korea 

JPARC
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Off Axis:

see Kajita talk:
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Spectral information solves degeneracy

where
√

Patm = sin θ23 sin 2θ13 {sin∆31 ⇒ sin(∆31∓aL)
(∆31∓aL) ∆31}

and
√

Psol = cos θ13 cos θ23 sin 2θ12 {sin∆21 ⇒ sin(aL)
(aL) ∆21}

2σ

Eν Window
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Summary Summary 

• T2K phase-I will start in 2009.

• In summer 2005, KEK/J-PARC decided to increase the 
baseline beam intensity by a factor of 2.

• If non-zero #13 is observed, T2K plan to proceed to T2K 
phase-II.

• Details need to be decided taking various factors into 
account (such as the value of #13, the other ext’s in the 
world, ..). But the Korean detector is a serious possibility.

• T2K phase-II can only start after 2020, since the 
construction of the next large detector(s) will take 7-10 
years. 
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Let me talk about a particular version:

Tokai to Kamioka-Korea twin HK complex

(T2KK=0.27+0.27 Mton) Ishitsuka-Kajita-HM-

Nunokawa hep-ph/0504026

Ishitsuka-Kajita-HM-

Nunokawa hep-ph/0504026

Note: T2KK is a temporary name; the real one would

be, e.g., T2KP if Pusan is chosen as detector location

Note: T2KK is a temporary name; the real one would

be, e.g., T2KP if Pusan is chosen as detector location



• NEW NEUTRINO BEAMS
• Neutrino Factory (muon storage ring)

• High Gamma Beta Beams

see Winter talk:



Mass Hierarchy: – sign of δm2
31

Matter Effects
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Leptonic CP and T Violation in Oscillations

CP
νµ ↔ νe ⇐⇒ ν̄µ ↔ ν̄e Super-Beams

T $ $ T

νe ↔ νµ ⇐⇒ ν̄e ↔ ν̄µ Nu-Factory
CP

CP Violation in Neutrino Oscillations

is related to Leptogensis
and hence Baryogenesis.

sparkE – 17 Nov 2003 2

inverted

normal

vacuum

Figure 1: Shown are (a) the neutrino mass-squared eigenvalues in matter and (b) the ratio

Jm/Jv, for the parameters listed in eq. (15), as a function of the neutrino energy. Positive

energies correspond to neutrinos, and negative energies correspond to anti-neutrinos (vice

versa for inverted δm2’s).

produces a large value of Jm. A quantitative view of the impossibility of matter to produce

a truly large amplitude results when the explicit expression for Jv in eq. (5) is substituted

into eq. (8). The result is

P !T
m = 2 cos θv

31 sin(δv)

[
[(sin 2θ21δm2

21)(sin 2θ32δm2
32)(sin 2θ31δm2

31)]v
[δm2

21 δm2
32 δm2

31]m

]
sin ∆m

21 sin ∆m
32 sin ∆m

31 .

(17)

As seen from eqs. (10) and (13), at either resonance the bracketed factor in this equation does

not become large. What the resonance manages to do is to cancel the small vacuum value of

sin 2θv
21 or sin 2θv

31 in the amplitude (16Jv) of the T-violating oscillation. But accompanying

even this cancellation is a negative consequence for the associated oscillation lengths, to

which we now turn.

3 Baseline Limitations

A significant enhancement of T-violating oscillation amplitudes requires a small-angle reso-

nance. The conditions for this are either

δm2
21|m ! δm2

21|v or δm2
32|m ! δm2

21|v . (18)

6

“Amplification”
near Resonance !

Neutrino Factory:



Matter effect

CP violation

Eµ = 20 GeV

Solar LMA

sin2 2θ13 = 0.04

|δm2
32| = 0.002 eV2 ν1

ν3

ν2

ν3

ν2ν1

δm2 < 0

δm2 > 0

Wrong-Sign Muon Measurements

Stat. error for

1020 decays

Neutrino Factory: 

 Only way to get to very small values of 

|〈sin δ〉T 2K
true − 〈sin δ〉NOνA

true | ≈ 0

|〈sin δ〉T 2K
fake − 〈sin δ〉NOνA

fake | ≈ 1.0

√
sin2 2θ13

0.05

if the measurement uncertainty on sin δ

≈ ±0.2

then the two fake solutions are well separated down to

sin2 2θ13 ≈ 0.01

– Typeset by FoilTEX – 5



Other Possibilities

• Supernova (Raffelt)

• Atmospheric 

• Precision Disappearance Measurements

• High Energy Cosmic Neutrinos (Quigg)

•  



• Near Term:  NOvA + T2K a powerful 
combination for               > 0.02 - 0.03

• For smaller              spectrum 
measurements are needed

• Very small values: Neutrino Factory

• Other

Conclusions
for Hierarchy Determination:

〈sin δ〉+ − 〈sin δ〉− = 2〈θ〉/θcrit ≈ 1.5

√
sin2 2θ13

0.05

〈sin δ〉+ − 〈sin δ〉− = 2〈θ〉/θcrit ≈ 0.5

√
sin2 2θ13

0.05

(ρL) for NOvA three times larger than (ρL) than T2K.

θcrit = π2

8
sin 2θ12
tan θ23

δm2
21

δm2
31

/(aL) ∼ 1/6

〈sin δ〉+ − 〈sin δ〉−

≈ 0.5

√
sin2 2θ13

0.05

〈sin δ〉+ − 〈sin δ〉−
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