F. Zwirner - University & INFN, Padova + IVSLA

SM Extensions with Gauged B-L

NO-VE, 17 April 2008

Mostly a critical review after discussions with: - L.Basso, M.Passera - G.Villadoro

Plan

- Motivations
- Constraints on extra Z' bosons
- A minimal non-susy model
- A minimal susy model
- Kinetic mixing
- Conclusions and outlook

Neutrinos = a window on BSM physics Sticking to the minimal SM degrees of freedom: $\Delta \mathcal{L} \sim \frac{(L H)^2}{2\Lambda} \rightarrow m_{\nu} \sim \frac{v^2}{\Lambda}$ [Weinberg] $m_{\nu} \sim 10^{-1} eV \rightarrow \Lambda \sim 10^{14-15} GeV$ Best guess for underlying degrees of freedom: SM-singlet right-handed neutrinos (type-I see-saw) What is then the underlying mass scale? With mass terms $m_D \sim y_N v$ and M_R , find: $\Lambda \sim \frac{M_R}{y_N^2} \quad M_R \sim 10^{14-15} GeV ? \quad M_R \sim TeV \\ y_N \sim 1 \quad y_N \sim y_e ?$ [see Feruglio] [see Shaposhnikov]

Choose here $M_R \sim \text{TeV}$ and $y_N \sim y_e$ Hierarchy problem? Today's energy frontier! Alone, no big impact at high-energy colliders: $y_N \sim y_e \rightarrow \text{SM}$ & nu-R very weakly coupled

How to generate a more interesting coupling? M_R = the scale of (B -) L breaking Promote (B-L) to an extra U(1) gauge symmetry

A reason for right-handed neutrinos: Y' = a Y + b (B-L) automatically anomaly-free if fermions in SM families with nu-R

Weinberg, QFT-II, p.388: "a neutral vector boson somewhat heavier than the Z⁰ and coupled to B-L seems like the most plausible addition to the SM"

Pragmatic motivation: "easy" LHC signal ?

 $Z' \rightarrow e^+e^-$ with SM-like couplings (Z_{SSM})

Mass	Expected events for 1 fb ⁻¹ (after all analysis cuts)	Integrated luminosity needed for discovery (corresponds to 10 observed evts)
1 TeV	~ 160	~ 70 pb ⁻¹
1.5 TeV	~ 30	~ 300 pb ⁻¹
2 TeV	~ 7	~ 1.5 fb ⁻¹

- with 100 pb⁻¹ large enough signal for discovery up to m > 1 TeV
- signal is (narrow) mass peak on top of small Drell Yan background

ultimate calorimeter performance not needed

Ultimate ATLAS reach (300 fb⁻¹): ~ 5 TeV [F. Gianotti, CERN-SPC, 17/9/07]

Similar reach for the CMS experiment

Further theoretical motivations GUTs

Embeddable in SO(10) grand unification: SO(10) \rightarrow SU(3)_CxSU(2)_LxSU(2)_RxU(1)_{B-L} \rightarrow SU(3)_CxSU(2)_LxU(1)_YxU(1)_{Y'} e.g., with a Higgs in the adjoint 45 representation

Type-II string models with D-branes Gauge group for a stack of N parallel D-branes: $U(N) \rightarrow SU(N) \times U(1)$

Multiple U(1) factors frequent in realistic models often including a residual non-anomalous U(1)_{B-L}

A picture of the brane-world (IIA)

LEP bounds on Z'

 $\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} - \frac{1}{2} M_{Z'}^2 Z'_{\mu} Z'^{\mu} \quad \text{(diagonal kin. and mass term)}$ $+ g_{Z'} Z'_{\mu} \sum \overline{f} z_f \gamma^{\mu} f + g_{Z'} (H^{\dagger} z_H Z'_{\mu} i D^{\mu} H + h.c.) + \dots$ (Z-Z' mixing after EWSB) (couplings to SM fermions)

LEP-1 Z-pole data mostly constrain Z-Z' mixing $|\theta| < \mathcal{O}(10^{-3})$

Z' Z' $\theta \sim rac{g_{Z'}}{g_Z} rac{M_Z^2}{M_{Z'}^2} z_H$

LEP-2 (off-pole) data constrain 4-fermion effective operators

 $\sim rac{g_{Z'}^2}{M_{\pi'}^2} z_e z_f$

Tevatron bounds on Z'

More difficult to parametrize in a simple way!

Typical bounds are on $\sigma(Z') \cdot BR(Z' \rightarrow l^+l^-)$ -Z'_{SM} But (already at leading order): Z'_Ψ Ζ'η Z', **Ζ'**γ 10⁻¹ $\sigma(Z') = g_{Z'}^2 f(z_q, z_u, z_d, s, M_{Z'}^2)$ α · **B(Z'**→ ee) (pb) e^+ 95% CL limit Expected 95% limit $LO \sigma \cdot B \times 1.3$ 10⁻³ \pm 1 σ expected 95% limit 900 700 800 e M_z (GeV/c²) CDF Run II 1.3 fb⁻¹ where f depends on the PDF PRL 99 (2007) 171802

Quantum numbers of the SM particles

	SU(3)	SU(2)	Y	B-L	T_{3R}	X
Q	3	2	1/6	1/3	0	-1
D^{c}	$\overline{3}$	1	1/3	-1/3	1/2	3
U^c	$\overline{3}$	1	-2/3	-1/3	-1/2	-1
L	1	2	-1/2	-1	0	3
E^{c}	1	1	1	1	1/2	-1
N^c	1	1	0	1	-1/2	-5
$H = H_2$	1	2	1/2	0	1/2	2
$\chi = \chi_2$	1	1	0	2	-1	-10
H_1	1	2	-1/2	0	-1/2	-2
χ_1	1	1	0	-2	1	10

 $Q = T_{3L} + Y \quad Y = T_{3R} + \frac{B-L}{2} \quad X = 4Y - 5(B-L) = 4T_{3R} - 3(B-L)$ LEP1 bounds more easily evaded for Y'=B-L [$z_{\rm H}$ =0] LEP2 bounds on M_{Z'}(TeV)/g_{Z'}: 6-7 for B-L, 15 for X

(most favourable case would be "leptophobic" Z')

How much room left for the LHC?

Normalization of $g_{Z'}$ and identity of Y' model-dependent Direct SO(10) breaking would give Y'~X and $g_{Z'}/g'~0.2$ Different possibilities within brane-world constructions

A minimal non-SUSY model [Buchmuller-Greub-Minkowski 1991]

SM (with 3 right-neutrinos & Higgs doublet) + extra $U(1)_{Y'}$ + complex SM-singlet Higgs x with B-L=-2 to generate M_R

$\Delta \mathcal{L}_{Yuk} = y_R \nu_R \nu_R \chi + h.c.$

$$V = m^{2}|H|^{2} + \mu^{2}|\chi|^{2} + \lambda_{1}|H|^{4} + \lambda_{2}|\chi|^{4} + \lambda_{3}|H|^{2}|\chi|^{2}$$

The gauged version of the singlet Majoron model [Chikashige-Mohapatra-Peccei 1980]

Acceptable symmetry breaking for suitable parameter choices

Main phenomenological features:

[see, e.g., recent studies by Khalil et al, Basso et al]

- Z' phenomenology as discussed before [with possible decays into right-handed neutrinos, no Z-Z' tree-level mixing for canonical gauge kinetic terms & Y'=B-L, ...]
- An extended Higgs spectrum: two neutral scalars h₁ & h₂ with complementary couplings to SM states controlled by their mixing angle. Typically, weakened signals at the LHC.
- The possibility of a purely radiative symmetry-breaking of the gauge symmetry via the Coleman-Weinberg mechanism (setting to zero the mass parameters in the scalar potential)

A minimal SUSY model

[Babu-Dutta-Mohapatra 2003, Khalil-Masiero 2007]

Enlarge the Higgs sector as required by supersymmetry:

 $H \rightarrow (H_1, H_2) \quad \chi \rightarrow (\chi_1, \chi_2)$

Write general gauge-invariant renormalizable W : $W = W_{MSSM} + y_N L N^c H_2 + y_R N^c N^c \chi_1 + \mu' \chi_1 \chi_2$

(automatically conserving baryon and lepton number) After introducing soft SUSY breaking as usual:

→Can realize radiative breaking of gauge symmetry
→Link SU(2)xU(1), (B-L) and SUSY-breaking scales
→Richer spectrum of neutralinos & neutral Higgses
→An enlarged sneutrino sector within the TeV scale

Kinetic mixing [Holdom 1986; DelAguila-Quiros-FZ 1987; ...]

In the presence of (at least) two U(1) factors, can write

$$\mathcal{L}_{kin} = -\frac{1}{4} \, (g^{-2})_{mn} \, F^m_{\mu\nu} \, F^{n\,\mu\nu}$$

with $(g^{-2})_{mn}$ defining a matrix of coupling constants besides the two diagonal U(1) couplings, the third off-diagonal coupling g_x can be reabsorbed into $g_{Z'}$ Y' but this is not stable against quantum corrections: $\frac{d(g^{-2})_{mn}}{dt} = -\frac{b_{mn}}{8\pi^2}$ $b_{mn} = \frac{2}{3} \sum_{f} Q_m^f Q_n^f + \frac{1}{3} \sum_{b} Q_m^b Q_n^b$

Only for orthogonal U(1) generators mixing postponed to 2-loop and threshold effects: almost true (excluding Higgs sector) for the (Y,X) or (T_{3R} ,B-L) pairs in the table

SUSY kinetic mixing

In the supersymmetric case, gauge kinetic mixing extends to gaugino masses and kinetic terms also to the D-term part of the scalar potential

$$\mathcal{L}_{kin} = -rac{1}{4}\int d^2 heta \ h_{mn} W^m W^n + h.c.$$

[old SUGRA literature; Dienes-Kolda-Russell 1997]

The MSSM RGE can be fully generalized [Villadoro, FZ]

Consequence: minimal models discussed above cannot be extrapolated as such to very large scales (e.g. GUT scale) kinetic mixing effects must be properly included, e.g.:

$$\theta \sim \frac{g_x}{g_Z} \frac{m_Z^2}{M_{Z'}^2}$$

Conclusions and outlook

- •SM extensions with right-handed neutrinos and an extra U(1) gauging B-L [or Y'=aY+b(B-L)] are quite plausible
- LEP constraints are quite strong (often more than Tevatron) but leave still room for possible discoveries at the LHC
- Kinetic mixing effects cannot be neglected in general especially when extrapolating models to high scales
- Interesting to explore more systematically ranges of $g_{Z'}$ and Y' combinations allowed by brane-world models
- Can one build a natural (not fine-tuned) SUSY model of this kind, compatible with grand unification, precision tests and cosmological constraints (baryogenesis,...) ? If so, would be worth exploring in detail its predictions!