La ricerca sperimentale dei neutrini di Majorana

Oliviero Cremonesi INFN Sezione di Milano Bicocca

Neutrini in Cosmologia

16 Maggio 2011 - Aula Emiciclo dell'Orto Botanico di Padova

- 1. Introduzione
 - Scopo
 - EMN
 - Approcci Sperimentali
 - Sensibilità
 - Tecniche Sperimentali
- 2. Situazione attuale
- 3. Esperimenti a breve e lungo termine

Il Doppio Decadimento Beta Nucleare

Processo Unico per stabilire proprietà del neutrino

$$E_{\rm B}({\rm MeV}) = a_{\rm v}A - a_{\rm a}(N - Z)^2/A - a_{\rm c}Z^2/A^{1/3} - a_{\rm s}A^{2/3} \pm a_{\delta}/A^{3/4}$$

Il Doppio Decadimento Beta Nucleare

 $Q_{\beta\beta} = 2533 \text{ keV}$

¹³⁰₅₄Xe

Meccanismo di massa

Un neutrino LH (L=-1) è assorbito ad un vertice Un antineutrino RH (L=1) è emesso all'altro

Scambio di un neutrino leggero

Particella di Majorana

• Inversione dell'elicità

Nel limite di piccole masse, l'ampiezza è proporzionale ad un solo parametro:

la massa efficace del neutrino

$$\langle m_{\nu} \rangle = \sum_{k}^{k} U_{ek}^{2} m_{k}$$

= $c_{12}^{2} c_{13}^{2} m_{1}^{2} + s_{12}^{2} c_{13}^{2} m_{2} e^{i\alpha} + s_{13}^{2} e^{i\beta} m_{3}$

Sette parametri incogniti:

- 3 masse: m_k
- 2 angoli: $\theta_{12} = \theta_{13}$
- 2 fasi violanti CP: α and β

Un UNICO vincolo sperimentale Indispensabili più misure COMPLEMENTARI

Mixing e Gerarchie di massa

La spiegazione degli esperimenti di oscillazione dei neutrini (solari, atmosferici, reattore, acceleratore) richiede l'esistenza di un mescolamento dei 3 stati a chiralita' L

$$\boldsymbol{\mathcal{V}}_{jL} = \sum_{k} U_{jk} \boldsymbol{\mathcal{V}}_{kl} \quad U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13} & -c_{12}c_{23} - s_{12}s_{23}s_{13} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13} & -c_{12}s_{23} - s_{12}c_{23}s_{13} & c_{23}c_{13} \end{pmatrix} diag(1, e^{\alpha_{21}/2}, e^{\alpha_{31}/2})$$

dove U e' una matrice unitaria e n_j sono autostati di massa (di Majorana). Si avranno cosi due Δm^2 indipendenti: $\Delta m_{21}^2 e \Delta m_{32}^2$

- Δm^2 nel range di valori misurato dagli esperimenti sui v (e $\leftrightarrow \mu$) solari (10⁻⁴ eV²)
- Δm^2 nel range di valori misurato dagli esperimenti sui v ($\mu \leftrightarrow \tau$) atmosferici (10⁻³ eV²)

Si hanno allora tre diversi casi (gerarchie) con differenti conseguenze su DBD e misure cinematiche di m_y, ma fenomenolgia simile per le oscillazioni:

- gerarchia diretta: $m_1 (\Delta m^2(sol)) m_2 (\Delta m^2(atm)) m_3$
- gerarchia inversa: $m_1 (\Delta m^2(atm)) m_2 (\Delta m^2(sol)) m_3$
- gerarchia quasi degenere: $m_1 (\Delta m^2) m_2 (\Delta m^2) m_3 (m_1 >> \Delta m^2)$

Fasi di Majorana

Effetto delle fasi di Majorana: interpretazione grafica

 $\langle m \rangle = | |U_{e1}|^2 m_1 + e^{i\alpha_1} | U_{e2}|^2 m_2 + e^{i\alpha_2} |U_{e3}|^2 m_3 |$

Processi esotici

$\beta\beta(0\nu)$ e m_v: teorema di Schechter-Valle

Termine di massa corrispondente

Gerarchie di Massa del Neutrino

Gerarchie: possibli ordinamenti delle masse dei neutrini compatibili con l risultati degli esperimenti sulle oscillazioni

Il parametro misurato sperimentalmente può essere espresso in funzione dell'autorstato di massa più leggero del neutrino Appaioni così due bande, correspondenti alle gerarchie inversa e diretta Nel caso degenere (il solo finora accessibile) le due bande sono indistinguibili

Risultati attuali

Informazioni combinate:

- Cosmologia Σm_i
- β singolo [$\Sigma m_i^2 |U_{ei}|^2$]^{1/2}
- β doppio $|\Sigma m_i |U_{ei}|^2 e^{i\alpha}i$

Sensibiltà (eV)

07-10	0 1
0.7 1.0	0.1
0.5	0.05
2.2	0.2
and TROITSK	
	0.5 2.2 and TROITSK

Il Tasso di Decadimento

Elementi di Matrice Nucleare: stato

- QRPA da F. Šimkovic, A Faessler, V. Rodin, P. Vogel, and J. Engel, Phys. Rev. C77, 045503 (2008), with gA =1.25, Jastrow SRC.
- SM da E. Caurier, J. Menendez, F. Nowacki, and A. Poves, Phys. Rev. Lett. 100, 052503 (2008).
- IBM-2 da J.Barea and F.Iachello, Phys. Rev. C79, 044301 (2009), gA =1.25, Jastrow SRC.

Fattore di merito nucleare

Α

Elementi di Matrice Nucleare ... "Roadmap"

Goal: Accordo entro 25% di tutte le stime con diversi metodi.

Inclusione di tutti I metodi: calcolo di prova di M_{GT} , M_{F} , M_{T} for ⁷⁶Ge-⁷⁶Se (GERDA) e ¹³⁰Te-¹³⁰Xe (CUORE)

- Con le stesse assunzioni per gli stati di particella singola
- Stessi valori di $g_A = 1.25$, $g_V = 1.00$
- Stesso operatore di transizione (richiesta più importante)

Controllo di tutte le funzioni d'onda: Tutti i metodi dovrebbero produrre spettri dei nuclei iniziali e finali da confrontare con I dati sperimentali.

Controllo degli integrali radiali

Firma (segnatura)

$(A,Z) \rightarrow (A,Z+2)^{++} + 2 e^{-1}$

Segnale:

- Un nuovo isotopo (ionizzato)
- Due elettroni

In principio si possono quindi ricavare: Informazione spettroscopica

- Energie dei singoli elettroni
- Angolo tra le direzioni degli elettroni
- Somma delle energie degli elettroni

Spesso la solo informazione disponibile

Ione figlio (A,Z+2)

Raggi gamma

- Decadimenti su stati eccitati
- Fotoni da 511 keV in decadimenti con β⁺

DBD: energia somma degli elettroni

La forma dello spettro della somma delle energie degli elettroni permette di distinguere da sola tra i modi di decadimento principali

Segnature addizionali:

- Distribuzione delle energie dei singoli elettroni
- Distribuzione angolare

Nuclidi più promettenti Q ~ 2-3 MeV

DBD: energie di singolo elettrone

Tasso sperimentale e sensibilità

Tasso sperimentale ββ-0νcon $N_{ββ}$ decadimenti ββ-0ν osservati

$$\tau_{1/2}^{-1} = \ln 2 \frac{\varepsilon N_{nuclei} t_{misura}}{N_{\beta\beta}}$$

Sensibilità sperimentale a $\tau_{\frac{1}{2}}^{0\nu}$ Con nessun decadimento $\beta\beta$ - 0ν osservato $N_{\beta\beta} \leq (bkg \cdot \Delta E \cdot M \cdot t_{meas})^{\frac{1}{2}}$ at 1σ

$$\Sigma(\tau_{1/2}^{0\nu}) \propto \varepsilon \frac{a.i.}{A} \sqrt{\frac{M \cdot t_{misura}}{\Delta E \cdot bkg}}$$

per bkg = 0, a 1σ

$$\Sigma^0(\tau_{1/2}^{0\nu}) \propto \varepsilon \frac{a.i.}{A} M \cdot t_{misura}$$

Nnuclei
t measnumero di nuclei attivi
tempo di misura [y]
massa del rivelatore [kg]
€
€
€
i.a.numero atore [kg]
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€
€

Parametri cruciali:

- Abbondanza isotopica
- Massa
- Risoluziopne energetica
- Livello del fondo

Strategie sperimentali

Rivelazione & identificazione dei nuclei figli (ricerche indirette)

- impossibile distinguere il canale di decadimento
- importante negli anni 70s-80s non piu' perseguita in pratica

Esperimenti geochimici Esperimenti radiochimici

Rivelazione in-linea dei due elettroni (ricerche dirette)

- scintillatori
- TPC a gas
- Camere a deriva a gas
- Campo magnetico eTOF

- chiara ricostruzione della topologia dell'evento
- 8 difficile avere grandi masse
- Parecchi candidati possono essere studiati con lo stesso rivelatore

Approccio omogeneo

rivelatore

Source = Detector (calorimetric technique)

scintillation phonon-mediated detection solid-state devices gaseous detectors

- Iimitazioni sui materiali dei rivelatori
- masse molto elevate dimonstrato: fino a~ 50 kg proposto: fino a ~ 1000 kg
- con opportuna scelta del rivelatore elevata risoluzione energetica
- nei calorimetri a gas (Xe) ricostruzione della topologia dell'evento
 - B richieste spesso contrastanti

Diodi a Ge Bolometri

Scelta dell'isotopo

	Q	a.i.
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.19
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6

- Energia di transizione
- Abbondanza isotopica
- Elementi Matrice Nucleare

GLI ESPERIMENTI

Presente e passato prossimo

Isotopo	Rivelatore		ESP	Materiale	kg y	$ au_{\scriptscriptstyle 1/2}$ Limite (y)	<m,></m,>
						(90% CL)	
⁷⁶ Ge	Ge diode	1	HDM*	Ge	~ 47.7	> 1.9 x 10 ²⁵	< 0.22-0.41
		2				≈ 1.2 x 10 ²⁵	≈ 0.28-0.52
		3				≈ 2.2 x 10 ²⁵	≈ 0.21-0.38
		4	IGEX			> 1.6 x 10 ²⁵	< 0.24-0.44
⁸² Se	Tracking	5	NEMO3	Se	3.6	> 3.6 x 10 ²³	< 1.1-1.6
¹⁰⁰ Mo	Tracking	5	NEMO3	Мо	26.7	> 1.1 x 10 ²⁴	< 0.45-0.93
¹²⁸ Te	Bolometer		Cuoricino	TeO ₂		> 1.1 x 10 ²³	
¹³⁰ Te	Bolometer	6	Cuoricino	TeO ₂	~20	> 2.8 x 10 ²⁴	< 0.35-0.59
¹³⁶ Xe	Xe scint	7	DAMA	L Xe	~ 4.5	> 1.2 x 10 ²⁴	< 1.1-2.9
¹¹⁶ Cd	Scintillator	8	Solotvino	$CdWO_4$		> 1.7 x 10 ²³	< 1.45-2.76

- 1
- 1. H.V. Klapdor-Kleingrothaus et al., Phys. Lett. A 16, 2409 (2001)
- 2. H.V. Klapdor-Kleingrothaus et al., Lett. B 586, 198 (2004)
- 3. H.V. Klapdor-Kleingrothaus et al., Phys. Lett. A 21, 1547 (2006)
- 4. C.E. Aalseth, Phys. Rev. C 65, 092007 (2002)
- 5. A.S. Barabash, and V.B. Brudanin, nucl-ex/1002.2862
- 6. E.Andreotti et al, Astroparticle Physics 34 (2011) 822–831
- 7. R. Bernabei et al. Phys. Lett. B 546, 23 (2002)
- 8. F.A. Danevich et al. Phys. Rev. C 67, 035501 (2003)
 - M.Kortelainen, and J. Suhonen, Phys. Rev. C 75, 051203(R) (2007).
 - M.Kortelainen, and J. Suhonen, Phys. Rev. C 76, 024315 (2007).
 - F. Simkovic et al., Phys. Rev. C 77, 045503 (2008).
 - J. Barea, and F. Iachello, Phys. Rev. C 79, 044301 (2009).
 - K. Chaturvedi et al., Phys. Rev. C 78, 054302 (2008).

Presente e passato prossimo (2)

I risultati piu' rilevanti degli ultimi 15-20 anni sono stati ottenuti nell'ambito di tre principali esperimenti basati su tecniche molto differenti:

- Heidelberg –Moscow (HM) (fermato nel Maggio 2003) Ha dominato la scena per oltre un decennio.
 E' l'unico esperimento per il quale sia stata dichiarata un'evidenza di segnale.
- NEMO3 (fermato a Dicembre 2010) Esperimento di generazione intermedia in grado di studiare diversi isotopi
- CUORICINO (fermato nel Giugno 2008) Esperimento di generazione intermedia basato sulla tecnica bolometrica. Dimostratore di CUORE

Heidelberg-Moscow: ⁷⁶Ge

• 5 cristalli HP-Ge, arricchiti a 87% in ⁷⁶Ge

massa totale attiva 10.96 kg \Rightarrow 125.5 moli di ⁷⁶Ge

- run da 1990 a 2003 al Gran Sasso
- statistica totale 71.7 kg×y 820 moli×y
- fondo: U/Th nei materiali del set-up b≈0.11 c/keV/kg/y a Q_{ββ}
- Schermatura di piombo e flusso N₂

Analisi di forma dei segnali (PSA)

1990 - 2001esposizione = 35.5 kg×y SSD $\tau_{\frac{1}{2}}^{0\nu} > 1.9 \times 10^{25} \text{ years}$ $\langle m_{\nu} \rangle < 0.35 \text{ eV} (0.3 - 1.24 \text{ eV})$

H.V.Klapdor-Kleingrothaus et al., Eur. Phys. J. A12 (2001) 147

H.V.Klapdor et al.: evidenza 0v-DBD ⁷⁶Ge

- Prima asserzione nel gennaio 2002 (Klapdor-Kleingrothaus HV et al. hep-ph/0201231) con una statistica di 55 kg y ed una significatività di 2.2-3.1 $\sigma \rightarrow$ forti critiche
- Confermato nel 2004 con l'aggiunta di una frazione significativa di dati (~1/4)
- Ulteriori perfezionamenti negli anni successivi:

2004:

- Fondo: 0.11 counts / (kg y keV)
- Segnale: 28.75 ± 6.87 eventi (Bkg:~60)
- Significativita': 4.2 σ
- $T_{1/2} = (0.69 4.18) \times 10^{25} \text{ y} (3\sigma)$

1990 – 2003, tutti i 5 rivelatori esposizione = 71.7 kg×y $\tau_{\frac{1}{2}} = 1.2 \times 10^{25}$ years $\langle m_{\sqrt{2}} \rangle = 0.44$ eV

H.V.Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198

H.V.Klapdor et al.: evidenza 0v-DBD ⁷⁶Ge

2006:

1995-2003, nuova rianalisi: selezione SSE con MC & ANN Segnale a 6.4σ 7.05 ± 1.11 eventi 2.23^{+0.44}_-0.31</sub> 10²⁵ years / 0.32±0.03 eV

H.V.Klapdor-Kleingrothaus et al., Phys. Scr. T127 (2006) 40-42

Ricerca SSE molto sofisticata:

- PSA
- Reti neuronali
 Verifica su dati di fondo e

calibrazionei

stattististica e sigigalama di futuri re sperimienti ri oro potranno non confrontare iscon que stoto i sistattato

H.V.Klapdor et al.: evidenza 0v-DBD ⁷⁶Ge

CUORICINO

TeO₂: calorimetri termici Isotopo attivo ¹³⁰Te

- Abbondanza naturale: a.i. = 33.9%
- energia di transizione: Q_{ββ} = 2529 keV
 Vite medie teoriche incoraggianti
 - Vite medie teoriche incoraggianti $\langle m_{\rm v} \rangle \approx 0.3 \ {\rm eV} \Leftrightarrow \tau_{\rm 1/2}^{0} \approx 10^{25} \ {\rm years}$

Materiale rivelatoreTeO₂

- Bassa capacità termica
- Cristalli di grandi dimensioni (5x5x5 cc)
 - Elevato livello di radiopurezza

Esperimento $\beta\beta$ di dimensioni intermedie Importante test per

- Radioattività
- Prestazioni di grande matrice LTD

Rivelatori a bassa temperatura (LTD)

Proprietà Buona risoluzione energetica

- Ampia scelta di materiali
- Approccio calorimetrico
- lentezza $\tau = C/G \sim 1 \div 10^3$ ms

Principio di rivelazione $\Delta T = E/C$ [C = capacità termica]

Bassa C

• Bassa T (i.e. $T \ll 1K$)

• Materiali dielettrici, superconduttori

Limite ultimo alla risoluzione E: fluttuazioni statistiche dell'energia

interna U $\langle \Delta U^2 \rangle = k_B T^2 C$

Cuoricino

CUORICINO: risultati

- Statistica totale 18 kg×y
- Risoluzione energetica media FWHM ΔE = 7.5 keV at $Q_{\beta\beta}$
- anticoincidenza per riduzione contributi superficie U/Th e^{γ} 's esterni
- Buon livello di fondo b≈0.18 ± 0.01 c/keV/kg/y @ Q_{ββ}

NEMO-3

NEMO-3: uno strumento unico per $\beta\beta(2\nu)$

NEMO-3 ββ(0v): risultati

Isotopo	Esposizione	T _{1/2}	<m_></m_>	NME
	[kg y]	[anni]	[eV]	Ref.
¹⁰⁰ Mo	26.66	> 1.1 x 10 ²⁴	< 0.45 - 0.93	1-3
⁸² Se	3.6	> 3.6 x 10 ²³	< 0.9 – 1.6 < 2.3	1-3 7
¹¹⁶ Cd	0.085	> 1.6 x 10 ²²		
¹⁵⁰ Nd	0.095	> 1.8 x 10 ²²	< 1.5 – 2.5 < 4.0 – 6.8	4-5 6
¹³⁰ Te	1.4	> 1.0 x 10 ²²	< 16 – 3.1	2,3
⁹⁶ Zr	0.031	> 9.2 x 10 ²¹	< 7.2 – 19.5	2,3
⁴⁸ Ca	0.017	> 1.3 x 10 ²²	< 29.6	7

Nuclear Matrix Elements references:

[1] M.Kortelainen and J.Suhonen, Phys.Rev. C 75 (2007) 051303(R)

- [2] M.Kortelainen and J.Suhonen, Phys.Rev. C 76 (2007) 024315
- [3] F.Simkovic, et al. Phys.Rev. C 77 (2008) 045503
- [4] V.A. Rodin et al. Nucl.Phys. A 793 (2007) 213
- [5] V.A. Rodin et al. Nucl.Phys. A 766(2006) 107
- [6] J.H.Hirsh et al. Nucl.Phys. A 582(1995) 124
- [7] E.Caurrier et al. Phys.Rev.Lett 100 (2008) 052503

Evidenza ββ (⁷⁶Ge - HM): stato

 $\beta\beta(0v)$ tempi di dimezzamento riscalati, corrispondenti all'intervallo (90% CL) dell'evidenza ⁷⁶Ge (KHDH), (Tk=T_{Ge}G(Ge)M(Ge)²/G(k)M(k)²) secondo diversi calcoli NME:IBM2, YI09, TU08 e SM08. Limiti per ¹³⁰Te (CUORICINO: rosso) e ⁸²Se (NEMO3: verde).

Goals degli esperimenti di prossima generazione

Sensibilità di pochi 0.01 eV su <m_β

- Soluzione del problema delle gerarchie
- Buone possibilità di osservare ββ (0ν) (LNV, Majorana ν's)

conferma/rejezione del risultato su ⁷⁶Ge

conferma: sensibilità di poche 100 meV su $\langle m_{\nu} \rangle$ sono sufficienti controllo su diversi isotopi

rejezione: sensibilità molto maggiori su **(m)** sono indispensabili

Come?

- Maggior numero di esperimenti su isotopi diversi
- Riduzione delle incertezze su F_N
- Miglioramento dei parametri che determinano la sensibilità

Abbondanza isotopica tramitearricchimento $\Sigma(\tau_{1/2}^{0\nu}) \propto \varepsilon \frac{a.i.}{A} \sqrt{\frac{M \cdot t_{misura}}{\Delta E \cdot bkg}}$ Massa del rivelatore

Riduzione fondo con:

- Selezione e manipolazione materiali
- Scelta della tecnica opportuna
- Segnature
- Risoluzione energetica

La strategia Internazionale per il DDB senza emissione di neutrini

APS neutrino study

We recommend, **as a high priority**, that a **phased program** of increasingly sensitive searches for

neutrinoless nuclear double beta decay $(0\nu\beta\beta)$

be initiated as soon as possible.

Range	Covered spectrum	Required mass	Status
100 – 500	Quasi-degenerate	200 kg	close
20 – 50	Inverted	1 ton	proposed
2 – 5	Any	100 tons	future technology

In the first two stages, more than one experiment is desirable, worldwide, both to permit confirmation and to explore the underlying physics.

ASPERA roadmap

PHASED PROGRAM	Name	Nucleus	Method	Location	European Members	Others
Present: 10-50 kg	Running experiments					
Next Future: 200-500 kg	CUORICINO	¹³⁰ Te	bolometric	LNGS	IT, NL, ES	US
Long range: tons	NEMO-3	¹⁰⁰ Mo ⁸² Se	tracko-calo	LSM	FR, CZ, UK ES, FIN	US, RU, JP
	Construction funding					
	CUORE	¹³⁰ Te	bolometric	LNGS	IT, NL, ES	US
	GERDA	⁷⁶ Ge	ionization	LNGS	DE,BE,IT,PO	RU
	Substantial R&D funding					
	EXO	¹³⁶ Xe	tracking	WIPP	СН	US, RU, CAN
KAMLAND (Xe) SNO+ (Nd)	SuperNEMO	¹⁵⁰ Nd or ⁸² Se	tracko-calo	LSC or LSM	FR,CZ,UK, SK, PL, ES, FIN	US,RU, JP UKR
	R&D and/or conceptual design					
	CANDLES	⁴⁸ Ca	scintillation	Oto Lab	-	JP
	CARVEL	⁴⁸ Ca	scintillation	Solotvina	-	UKR, RU, US
	COBRA	¹¹⁶ Cd, ¹³⁰ Te	ionization	LNGS	UK, DE, IT, PO, SK	US
	DCBA	¹⁵⁰ Nd	tracking	t.b.d.	-	JP
	MAJORANA	⁷⁶ Ge	ionization	SNOLAB or DUSEL	-	US
	MOON	¹⁰⁰ Mo	tracking	t.b.d.	-	JP
	SI X ++	¹⁵⁰ Nd	scintillation	SNOLAB	-	CAN, US +
	other decay modes					
	TGV	¹⁰⁶ Cd	el. capture, running	LSM	FR, CZ	RU

ASPERA roadmap

Isotopical enrichment

Isotope enrichment will have a large impact on the cost of future Experiments.The production of a large amount of isotopes is possible though ultra-centrifugation, laser separation (AVLIS) or Ion Cyclotron Resonance (ICR) techniques. [...]

A Design Study should be done for a large production (100kg) with the ICR technique.

Nuclear Matrix Elements

We finally reiterate the importance of assessing and reducing the uncertainty in our knowledge of the corresponding nuclear matrix elements, experimentally and theoretically as well as the importance of studying alternative interpretations of neutrino-less double beta decay such as those offered by super-symmetry. This requires a program as vigorous, although not as expensive, as construction of the double beta detectors itself.

La sfida

Controversia ⁷⁶Ge: perchè?

- Bassa statistical- misura ripetibile con difficoltà
- Incertezze su livello ed modellizzazione del fondo
- Righe non identificate
- Strumenti ausiliari insufficienti

Problema delle gerarchie: riduzione fondo

- Per iniziare a esplorare la gerarchia inversa: 1-10 counts / y ton
- Per coprire la regione della gerarchia inversa: 0.1 -1 counts / y ton

Goal: 1 count/ton/y

NEMICI

- (ββ**2**ν)
- Radioattività naturale dei materiali
- neutroni
- isotopi cosmogenici a vita lunga

Gli esperimenti attuali hanno masse ~10 kg (isotopo)

- Per escludere la gerarchia inversa - Massa (isotopo): 1 ton
- e naturalmente
 - Isotopo appropriato
 - Basso livello di fondo

Irrealistico proporre direttamente un salto da 10 kg to 1 ton

Necessaria tappa intermedia a 100 kg ...

... caratterizzata da piena comprensione e controllo del fondo

Esperimenti e tecniche

CUORE - ¹³⁰Te Matrice di rivelatori di TeO₂ naturale operanti a 10 mK Prima fase: 200 Kg (2012) – LNGS – può contare su esperienza Cuoricino Risoluzione energetica dimostrata: 0.2 % FWHM GERDA – ⁷⁶Ge Matrice di diodi a Ge arricchiti operanti in argon liquido Prima fase: 18 Kg; seconda fase: 40 Kg - LNGS Risoluzione energetica dimostrata: 0.16 % FWHM MAJORANA - ⁷⁶Ge Matrice di diodi a Ge arricchiti operanti in criostati convenzionali di rame Moduli da 60 kg; prima fase: 2x60 Kg moduli Risoluzione energetica dimostrata: 0.16 % FWHM **COBRA** - ¹¹⁶Cd – 9 possibili isotopi $\beta\beta$ Matrice di rivelatori CdZnTe arricchiti in ¹¹⁶Cd operanti a temperatura ambiente Goal: 117 kg di ¹¹⁶Cd Prototipi su piccola scala @ LNGS Risoluzione energetica dimostrata: 1.9% FWHM LUCIFER - ⁸²Se - ¹¹⁶Cd - ¹⁰⁰Mo Matrice di bolometri scintillanti operanti a 10 mK (ZnSe or CdWO₄ or ZnMoO₄) Prima fase: 20 Kg (2013) – LNGS – basato su R&D INFN-V @ LNGS Risoluzione energetica dimostrata: 0.25-1 % FWHM

Proprietà dei calorimetri ...

Anche se i calorimetri ad alta risoluzione **non** hanno capacità traccianti, sono in grado di fornire informazioni topolgiche.

Inoltre, quando accoppiati ad altri dispositivipossono ottenere riduzioni sensibili dei livelli di fondo:

GRANULARITA' del disegno di base

- CUORE: 988 singoli bolometri in matrice compatta
- COBRA: 64,000 rivelatori in matrice compatta
- MAJORANA: 57 singoli diodi in matrice compatta per ciascun modulo

DISCRIMINAZIONE DI FORMA DEGLI IMPULSI (PSA)

- <u>GERDA / MAJORANA possono separare gli eventi sito singolo / multiplo</u>

SEGMENTAZIONE (PIXEL)

La granularità può essere ottenuta attraverso una sementazione degli elettrodi di lettura.

R&D in corso per GERDA, <u>MAJORANA</u>, COBRA

SCHERMATURE ATTIVE

- GERDA: diodi a Ge operanti in LAr attivo

RIVELAZIONE SIMULTANEA DI LUCE E FONONI (calore)

- BOLUX/CUPIDO R&D in corso per numerosi isotopi
- LUCIFER dimostratore finanziato da ERC

Ancora calorimetri: scintillatori

CANDLES – ⁴⁸Ca

Matrice di cristalli CaF₂ scintillanti (non drogati)

- CANDLES I and II: dimostratori a massa limitata
- Prossima fase: CANDLES III, incostruzione, consiste di 305 kg divisi in 96 cristalli letti da 40 PMT
- Fasi successiva: CANDLES IV (richiede R&D) 6.4 ton divise in 600 cristalli 6.4 Kg di ⁴⁸Ca
- Goal: CANDLES V 100 ton
- Risoluzione energetica dimostrata: 3.4 % FWHM (estrapolata da 9.1 % a 662 keV) L'elevato Q valore (4.27 MeV) contribuisce ad abbattere i contributi della radioattività naturale. PSA e correlazioni temporali dovrebbero fare il resto. SNO+ - ¹⁵⁰Nd
- Evoluzione di SNO: Scintillatore organico liquido ultrapuro caricato con Nd (0.1-1%) Rivelatore ben conosciuto - Enormi quantità di isotopo – Difficoltà per la resa in luce Sensibilità m_v :0.04-0.1 eV.
- Stima fondo incompleta.
- Finanziato da NSERC . Inizio costruzione 2008. Completamento: 2010 KAMLAND-Zen – ¹³⁶Xe
- Scintillatore organico liquido ultrapuro caricato con Xe. Proposta recente.
- R&D su arricchimento e purificazione: completi. Stima fonod incompleta.
- Fase I: 240-400 kg dimostrazione fattibilità
- Fase II:1000 kg ¹³⁶Xe, concentratori di luce e scintillatore di qualità per migliore risoluzione energetica (~30M\$) 25 meV in 5 anni. **Inizio fine 2012.**

EXO - ¹³⁶Xe

TPC a Xenon liquido arricchito isotopicamente Riconoscimento di vertice e traccia; possibile identificazione del singolo ione di (prodotto DBD) \Rightarrow solo fondo 2v DBD. Prima fase: (EXO-200: finanziato, installazione @ WIPP): 200 kg Sensibilità m_x: 270-380 meV Passi futuri: 1-10 ton Risoluzione energetica dimostrata: 3.3 % FWHM (migliorata grazie alla rivelazione simultanea di carica e luce [correlazione]) In parallelo con EXO-200: R&D per identificazione ed estrazione ione Ba Ba⁺⁺ identificato tramite spettroscopia ottica

NEXT - ¹³⁶Xe

TPC a gas ad alta pressione. Tracciamento: vertice + ricostruzione topologica. Massa totale : 80 kg Goal: miglioramento risoluzione energetica a ~1% @ CANFRANC nel 2013

Rivelatori non omogenei

SUPERNEMO - 82Se o 150Nd

Moduli con sorgente in fogli, sezioni traccianti (camere a deriva in modalità Geiger) e calorimetriche (scintillatori a basso Z)

Campo magnetico per riconoscimento carica

Possibile configurazione: 20 moduli con 5 kg di sorgente ciascuno \Rightarrow 100 Kg @ Modane (dopo estensione)

Risoluzione energetica: 4 % FWHM

Basato sull'esperienza di NEMO3

MOON - 100 Mo o 82 Se o 150 Nd

Scintillatori plastici a molti strati intercalati con sorgente in fogli + sezioni traccianti (fibre o MWPC)

MOON-1 prototipo senza sezione tracciante (2006)

MOON-2 prototipo con sezione tracciante

Risoluzione energetica dimostrata: 6.8 % FWHM

Goal finale: esposizione di 5 y x ton

DCBA - ⁸²Se o ¹⁵⁰Nd

Spettrometro per particelle beta particles consistente di sorgente in fogli inserita in camera a deriva con campo magnetico

Prototipo: fogli di $Nd_2O_3 \Rightarrow 1.2$ g of ¹⁵⁰Nd

Risoluzione spaziale ~ 0.5 mm; risoluzione energetica 11% FWHM a 1 MeV \Rightarrow 6 % FWHM at3 MeV

Rivelatore finale: 10 moduli con 84 m² di sorgente in fogli per modulo(da 126 a 330 Kg di massa totale)

Esperimento	ls o to p o	Massa isotopo (kg)	Т _{1/2} (у)	Presa dati Start	S ta to
CUORE	¹³⁰ T e	203	2.1 x 10 ²⁶	2012	Construction
GERDA I	⁷⁶ G e	17.9	3 x 10 ²⁵	2009	Construction
GERDA II	⁷⁶ G e	40	2.0 x 10 ²⁶	2011	Funded
E X O - 200	¹³⁶ X e	200	6.4 x 10 ²⁵	2009	Construction
Majorana	⁷⁶ G e	30-60	1.1 x 10 ²⁶	2011	Funded R&D
S uperN E MO	⁸² S e	100	2.1 x 10 ²⁶	2011	R &D
SuperNEMO	¹⁵⁰ Nd	100	1.0 x 10 ²⁶	2011	R &D
CANDLES	⁴⁸ C a	0.35		2009	Funded R&D
MOON II	¹⁰⁰ Mo	120			R & D
DCBA	¹⁵⁰ Nd	20			R & D
SNO+	¹⁵⁰ Nd	50-500			R &D
K A ML A N D	¹³⁶ X e	400-1000		2012	C ons truction
C O B R A	¹¹⁶ C d	420			R & D
C O B R A	¹³⁰ T e	420			R & D

CONCLUSIONI

Il doppio decadimento beta senza emissione di neutrini resta uno strumento unico per lo studio delle proprietà del neutrino

- Natura (Majorana/Dirac)
 - Scala assoluta delle masse
 - Violazione del numero leptonico
 - ► (Violazione di CP)

Calcoli NME

Situazione sperimentale:

- Evidenza asserita per $\beta\beta(0\nu)$ di ⁷⁶Ge
- Nuovi esperimenti di 2^{nda} generazione (200 kg isotopo) in construzione
- Numerosi sviluppi tecnici interessanti e promettenti.
- Programmi a diverse fasi con dimostratori

Confronto con misure complementari da altri campi di ricerca (cosmologia)

Goal ultimo: <*m*_∨> ~ 10 meV

- Molte proposte con tecniche ed isotopi diversi
- Promuovere il maggior numero possibile di esperimenti su isotopi diversi
- Ridurre le incertezze sugli elementi di matrice nucleare F_N

CONCLUSIONI (2)

Periodo importante per la fisica del Neutrino:

- Regione degenere sta per essere completamente analizzata
- Elevato potenziale di scoperta nel caso della gerarchia inversa

IN EUROPA

CUORE GERDA Cuoricino COBRA DAMA

GERDA

Germania, Italia, Belgio, Russia

Scopo: verifica "a tempi brevi" dell'evidenza HM Utilizzando i rivelatori arricchiti in ⁷⁶Ge esistenti (HM, Igex)

Proposta: cristalli di Ge nudi in LAr

- 1.5 m (LAr) + 10 cm Pb + 2 m water
- Livello di fondo migliorato di 2-3 ordini di grandezza
- Schermatura attiva con LAr scintillante

3 fasi sperimentali

Fase I: rivelatori HM & IGEX (~20 kg)

- Installazione in lab sotterraneo
- Background: 0.01 counts/ keV kg y
- Analisi del risultato ⁷⁶Ge per lo stesso nuclide (esclusione/conferma a 5σ)
- Sensibilita': 3 x 10²⁵ y
- Inizio presa dati: 2011

Fase II: ~20 kg addizionali di diodi ⁷⁶Ge (rivelatori segmentati)

- Background: 0.001 counts / keV kg y
- Sensibilita' dopo 100 kg y (~3 anni): 2×10^{26} y ($(m_v < 90 290 \text{ meV})$)
- Fase III: a seconda dei risultati fisici delle fasi I/II
- Esperimento da ~ 1 ton con collaborazione alivello mondiale (MAJORANA) < m_> < 20 - 50 meV

Se il segnale dichiarato da KK in HM e' effettivamente bb, allora GERDA I osservera' circa 7 conteggi in un anno (18 kgxy), sopra un fondo di 0.5 Conteggi (corrispondente ad una probabilita' di ~10⁻⁵)

GERDA @ LNGS

1400 m thick rock shield

Clean room: Detector handling

Liquid Ar cryostat: Shielding, cooling of detectors

Cu shield

Lock system:

Detector

insertion

Phase I detector array

COLUMN STATE

Water tank instrumented with PMTs: Shielding, Cherenkov muon-veto

GERDA: il criostato

Realizzato in acciaio a basso livello di radioattivita':

1-5 mBq/kg

- Interno del criostat con il rivestimento di rame
- Flussaggio costante per ridurre l'emanazione di Rn da ~30 a 15 mBq
- Rivestimento interno di rame (spessore3/6 cm)
- controllo livello evaporazione Lar (< 2% /giorno)
- scintillazione del LAr per ridurre il fondo dall'esterno

GERDA: contenitore esterno e muon veto

- Schermo attivo
- Acqua ultrapura dall'impianto di Borexino
- 66 PMTs: rivelatore Cerenkov
- Scintillatori plastici sul tetto della clean room

GERDA: muon veto

GERDA: I rivelatori

Fase I

GERDA I: detector testing

Low mass detector holder: developed and tested

- Definition of detector handling protocol
- Optimization of thermal cyclings
- Bare Ge Crystals in Lar
 - current in LAr with prototype detector
 - detector parameters are not deteriorated
 - >40 warming and cooling cycles carried out
 - More than 1 year of operation at low leakage

Same performance in LN₂/LAr

GERDA II: detetctors R&D

Two technologies pursued with advanced $0\nu\beta\beta$ -signal recognition & bgd suppression

GERDA II: discriminazione con BEGe

GERDA I: stato

- Fase preliminare conrivelatori di Germanio naturale (2010)
- Introduzione rivelatori IGEX/HM ed inizio GERDA I (2011)

GERDA I: stato

- Primo inserimento: giugno 2010
- Misure di fondo e di calibrazione
 - background index from 0.169 cts/(keV kg y) to 0.074 cts/(keV kg y)
 - current background index (E-field free): 0.055 cts/(keV kg y)

CUORE

<u>Cryogenic Underground Observatory for Rare Events</u> array compatto di 988 cristalli di TeO₂ 5×5×5 cm³ (750 g)

batto di 988 cristalli di TeO₂ 5×5×5 cm³ (75 741 kg TeO₂ : calorimetro granulare 600 kg Te = 203 kg ¹³⁰Te

Rivelatore singolo ad alta granularita'

CUORE (2)

Collaborazione internazionale

I - GB - US- CINA

Buon controllo del fondo

- Setup sperimentale dedicato
- Fattibilita' dimostrata (CUORICINO)

In fase di installazione @ LNGS

- criostato realizzato con tecniche speciali e materiali selezionati
- refrigeratore a diluizione senza liquidi criogenici
- diversi livelli (strati) di schermatura

Approvato nell'autunno del 2004

In costruzione dal2005

- 988 cristalli di TeO_2 finanziati da INFN and DoE. Inizio produzione: 2008
- La prima torre di CUORE (CUORE-0) sara' assemblata durante la prossima estate (2011)

	В	D	T _{1/2}	<m_>> </m_>
sensihilita' a 5 anni	c/keV/ton/y	keV	10 ²⁶ y	meV
	10	5	2.1	19-100

CUORICINO: il fondo

CUORICINO: background budget

- (~40%) Compton events from 2615 keV peak of 208TI, from 232Th cryostat contamination
- (~50%) Degraded alphas from 238U and 232Th on copper surfaces
- (~10%) Degraded alphas from 238U and 232Th on crystal surfaces

CUORE: piano temporale

ID	Task Name	Start	Finish	Est Float		2011				2012			20	13				2014	
				(mo.)	Qtr 3 Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3 (Qtr 4 C	tr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2
1	1.0 Hut	Mon 10/13/08	Fri 6/29/12																
2	CUORE Lifting System (CLS)	Thu 9/17/09	Wed 4/27/11	n/a															
3	Clean Room Radon Seal & Abatement	Mon 10/13/08	Wed 12/14/11	n/a															
4	Faraday Cage	Mon 1/2/12	Fri 6/29/12	13 mo					1]								
5	2.0 Detector	Wed 8/1/07	Fri 8/16/13																
6	Crystal Procurement	Wed 6/30/10	Fri 8/31/12	7 mo.	C														
7	Thermistors	Wed 3/16/11	Fri 7/13/12	8 mo.		C					-	1							
8	Structure - Design, Prod.	Wed 8/1/07	Mon 1/9/12																
9	Surface Cleaning	Thu 4/24/08	Fri 5/31/13	0 mo.											3				
10	3.0 Cryogenics	Wed 8/1/07	Thu 11/15/12																
11	3.1 Cryo Design & Construction	Wed 8/1/07	Thu 11/15/12				i						-						
12	Cryogenic Procurements	Wed 8/1/07	Thu 2/16/12																
13	Cooling Units and Test Dewar	Wed 8/1/07	Fri 11/4/11	5 mo.					3										
14	300K - 4K Chamber Fab	Mon 5/10/10	Thu 6/9/11	1 mo.				۱											
15	600mK - MC Fab	Fri 6/10/11	Thu 2/16/12	2 mo.	-		Ì												
16	Detector Suspension	Mon 3/1/10	Fri 3/30/12	16 mo.															
17	Internal Lead Shielding	Mon 12/1/08	Thu 11/15/12	9 mo.															
18	3.2 Calibration System	Thu 4/23/09	Fri 8/31/12		-														
19	Finalize Calibration Design	Thu 4/1/10	Wed 3/23/11																
20	Calibration Prototypes	Thu 4/23/09	Fri 4/15/11	2 mo.															
21	Calibration Construction	Tue 2/1/11	Fri 8/31/12	3 mo.		C]							
22	4.0 Electronics	Tue 12/22/09	Thu 12/6/12		-														
23	Elec. Production & Testing	Tue 12/22/09	Thu 12/6/12	2 mo.															
24	6.0 Data Analysis Tools	Mon 10/3/11	Fri 2/17/12	n/a	-														
25	7.0 Assembly Integration & Test	Fri 6/10/11	Mon 2/16/15		-		•						-			_			
26	Cryostat Integration into Hut	Fri 6/10/11	Thu 6/27/13				•)					-						
27	Initial Installation & 4K Test	Fri 6/10/11	Mon 3/19/12	1 mo.	-			·											
28	Shield Install and Partial Load Test	Tue 3/20/12	Tue 11/6/12	1 mo.	-						•								
29	Base Tempurature Test - Full Load	Wed 11/7/12	Thu 6/27/13	1 mo.	-								2		3	_			
30	7.4 Tower Assembly & Integration	Mon 10/31/11	Tue 7/30/13		-														
31	Assemble Towers 1 to 3	Mon 10/31/11	Thu 1/26/12		1				C	3									
32	Assemble Towers 4 to 9	Mon 6/4/12	Wed 11/7/12	4 mo.							C								
33	Assemble Towers 10 to 15	Mon 12/3/12	Thu 5/16/13	4 mo.	-								Č.	_	3				
34	Assemble Towers 16 to 19	Mon 6/3/13	Tue 7/30/13	0 mo.	-														
35	7.5 Electronics Install & Commissioning	Fri 12/7/12	Thu 6/6/13	2 mo.	1								Ľ]				
36	7.6 Detector Insertion & Sys. Testing	Thu 8/1/13	Mon 2/16/15		1														
37	Detector Insertion	Thu 8/1/13	Fri 10/25/13	3 wk.															
38	Initial Cooldown and System Check	Mon 11/11/13	Wed 1/22/14	3 wk.															
39	Lvl 2 System Test Complete	Fri 2/14/14	Fri 2/14/14															🍾 2	/14
40	CD 4 - US Deliverables Complete	Mon 2/16/15	Mon 2/16/15		1														

CUORE: edificio

CUORE: linea di assemblaggio torri

CUORE: camera pulita e linea di assemblaggio torri

CUORE-0

- prima torre di CUORE
- criostato di CUORICINO (hall A @ LNGS)

Motivazioni

test ad alta statistica dei numerosi cambiamenti introdotti per la struttura ed assemblaggio delle torri di CUORE:

- Incollaggio
- montaggio
- Assemblaggio
- Fili
- ...

Dimostratore di CUORE: fondo atteso in ROI e nella regione alfa (> 3-4 MeV) migliorato di un fattore 3 rispetto a CUORICINO 0.07 counts/keV/kg/y

Esperimento indipendente: sensibilita' migliore rispetto a CUORICINO

CUORE-0: sensibilita'

Bolometri: strategie per il controllo del fondo

Strategia adottata da CUORE: eliminazione/riduzione del contributo superficiale

Azione sulla superficie dei materiali

- Tecniche di ultra-pulizia del rame
- Rivestimento con strati di plastica (PET)

Test diretto @ LNGS (TTT): TECM Legnaro

Strategia alternativa

Azioni sul rivelatore: rivelatori compositi

- Scintillazione (diretta/indiretta)
- Cerenkov
- Topologia

Bolometri scintillanti: BOLUX

Tecnica molto promettente per la riduzione (e diagnostica) del fondo

Bolometri scintillanti: BOLUX

CdWO₄: 508g

- Already tested different scintillating crystals (CdWO₄, CaF₂, CaMoO₄, SrMoO₄, PbMoO₄, ZnSe, ...).
- With some of them we have obtained excellent results (for example $CdWO_4$, $CaMoO_4$ and ZnSe).

ZnSe:337 g

BOLUX: CdWO₄

Background CdWO₄ 3x3x6 (426 g) – Scatter Plot

Energy [keV]

LUCIFER: progetto ERC

⁸²Se - ¹¹⁶Cd - ¹⁰⁰Mo

Matrice di bolometri scintillanti operanti a 10 mK (ZnSe or CdWO₄ or ZnMoO₄) Prima fase: 20 Kg (2013) – LNGS – basato su R&D INFN-V @ LNGS Risoluzione energetica dimostrata: 0.25-1 % FWHM

Crystal	Isotope weight	Useful material	$Half Life \ limit$ $(10^{26}y)$	Sensitivity* to m _{ee} (meV)			
CdWO4	¹¹⁶ Cd 15.1 kg	32%	1.15	65-80			
ZnMoO4	¹⁰⁰ Mo 11.3 kg	44%	1.27	67-73			
ZnSe [baseline]	⁸² Se 17.6 kg	56%	2.31	52-65			
ZnSe [option 1]	⁸² Se 20.5 kg	56%	2.59	49-61			
ZnSe [option 2]	⁸² Se 27.8 kg	56%	3.20	44-55			

SuperNEMO

Francia, UK, Russia, Spagna, USA, Giappone, Repubblica Ceca, Ucraina, Finlandia

Stesso principio di NEMO3 su scala maggiore

100 kg of ⁸²Se or ¹⁵⁰Nd

- Possibilita' di produrre ¹⁵⁰Nd (AVLIS)
- Calorimetro tracciante
- Tecnologia provata (NEMO3)
- Topologia (rivelazione dei 2 elettroni)
- Energie singole e somma + correlazione angolare
- Identificazione delle particelle
- Background control
- source purification
- background level measurement
- external background reduction (Rn)

3 years R&D aiming at a 50-90 meV <m_.> sensitivity: T_½ > 2. 10²⁶ yr

- improvement of energy resolution
- increase of efficiency
- background reduction

funded by France, UK and Spain

Planar geometry

- source (40 mg/cm²): 12m²
- tracking volume: ~3000 channels
- calorimeter: ~1000 PMT

Modular:

- ~5 kg of enriched isotope/ module
- 100 kg: 20 modules
- ~ 60 000 channels for drift chamber ~ 20 000 PMT

energy resolution $\Delta_E = 2.6\%$ @ 3 MeV efficiency: 40%

Canfranc/LSM

- 2009: TDR
- 2011: commissioning and data taking of first module
- 2013: Full detector running

SuperNEMO

20 modules for 100 kg

Source: ~ 5kg (4 0 mg/cm², 12m²) Tracking: ~2,100 drift cells). Calorimeter: ~600 blocks

LABORATOIRE DE L'ACCÉLÉRATEURLINÉAIRE

IN2P3-CNRS et Université PARIS-SUD Centre Scientifique d'Orsay - Bât 200 - B.P. 34 91898 ORSAY Cedex (France)

J.FORGET & C.BOURGEOIS - SuperNEMO module

ULISSE project

MODANE UNDERGROUND LABORATORY 60'000 m³ EXTENSION

LABORATOIRE SOUTERRAINE DE MODANE AGRANDISSEMENT 60'000 m³

SuperNEMO

Spagna (varie istituzioni), Francia (CEA-Saclay,) Portogallo (Coimbra), ...

Xe TPC ad alta pressione

- Scintillazione primaria per t0
- Luce di elettroluminescenza per
 - Tracciamento
 - Calorimetria

Spagna:

- maggior parte dei collaboratori e finanziamenti
- laboratorio (Canfranc)

NEXT: 3 experimental phases

NEXT-0 and NEXT-1 (2008-2011):

- Show technological feasibility
- Acquire know-how
- Choose technologies
- Proliferation of small-scale (1kg or less of Xe at 10 bar)
- TPC prototypes at various NEXT institutions

NEXT-10 (2010-2013):

- Show control of backgrounds
- Mid-scale (10 kg of Xe) radiopureprototype at Canfranc Underground Laboratory

NEXT-100 (2012-):

- Bβ2v and ββ0v search
- Large-scale (100 kg of Xe) detector at CanfrancUnderground Laboratory
 - UNIZAR NEXT-1 built
 - IFIC NEXT-1 in preparation

NEL MONDO

EXO

- concept: scale Gotthard experiment adding Ba tagging to suppress background (¹³⁶Xe→¹³⁶Ba⁺⁺+2e)
- calorimetry + tracking
- single Ba⁺ detected by optical spectroscopy
- ¹³⁶Xe enrichment easier and safer
- LXe TPC + scintillation
- energy resolution $\Delta_{\rm E}$ = 2%
- expected bkg only $\bar{by} \beta\beta$ -2v

Goal: 5y sensitivity (1 ton 80% i.e. Xe):T_{1/2} > 2 10²⁷ y (<m> ~ 25-30 meV)

Parallel activities:

EXO-200:

a LXe detector without Ba tagging using 200 kg of Xe enriched to 80% in 136Xe with

~150 meV sensitivity to Majorana masses

Ba-tagging R&D:

- Transfer from LXe to ion trap
- Directly tag in LXe volume

High pressure GXe detector R&D:

- Energy resolution and readout scheme
- Tracking: pressure and light gas mixes
- Ba tagging in gas

EXO: energy resolution

Use (anti)correlations between ionization and scintillation signals (now also used in DM detectors)

EXO: Ba+ tagging

First single ion detection in high pressure gas (He, Ar) Remaining challenge is the efficient transfer of single Ba ions from LXe to the ion trap

Cryogenic dipstick

Capture ion on SXe coating LHe cooling (~20K) to maintain stable SXe coating in 10-8 torr vacuum Microcapacitor used to measure and stabilize SXe with accuracy of a few monolayers in LXe and vacuum

EXO-200

Intermediate Prototype without Barium Tagging

- TPC Vessel fully machined at Stanford under 7 m.w.e shielding; E-beam welding used for all but final weld to minimize introduction of radioactive background
- 200 kg enr. Xe (80% in 136Xe)
- Vessel complete, welded to door
- Half detectors almost complete
- (APDs, cables under assembly)
- Detector at WIPP: lead shielding, Xe plumbing almost complete, cryogenics tests in progress

Schedule:

- engineering run Summer 09
- physics run Fall 09
- first 2nu measurement 2010
- 0nu 3–5 years

EXO-200 @ WIPP

SNO: One million pieces transported down in the 9 ft x 12 ft x 9 ft mine cage and re-assembled under ultra-clean conditions. Every worker takes a shower and wears clean, lint-free clothing.

SN

Over 70,000 Showers to date and counting

AVAVAT ANNA MATA

SNO+

SNO+: SNO filled with liquid scintillator

A liquid scintillator detector has poor energy resolution

Huge quantities of isotope (high statistics) and low backgrounds however help compensate

- source in-source out capability
- large, homogeneous liquid detector leads to well-defined background model
- possibly source in-source out capability
- using the technique that was developed originally for LENS and now also used for Gd-loaded scintillator
- SNO+ collaboration managed to load Nd into pseudocumene and in linear alkylbenzene (>1% concentration)
- with 1% Nd loading (natural Nd) a very good neutrinoless double beta decay sensitivity is predicted, but...

Nd loaded sintillator:

1% loading (Natural Nd) large light absorption by Nd 47 ± 6 pe/MeV (Monte Carlo) 0.1% loading (Isotopically enriched to 56% Nd) acceptable 400 ± 21 pe/MeV (Monte Carlo)

SNO: main engineering changes

Existing AV Support Ropes

AV Hold Down Ropes

Scint. Purification, AV Hold Down Otherwise, the existing detector, electronics etc. are unchanged.

SNO+

 $m_{BB} \sim 0.04 \text{ eV}$

Commissioning and data taking in early 2012

SNO+ sensitivity

The D.B.D. Limit as a Function of Livetime

- Each SNO+ point represents a different MC "experiment" so as to reflect the statistical spread of derived limits.
- Ultimately, the ability to achieve such sensitivities in practise may rest on securing sufficient control of backgrounds

KAMLAND

¹³⁶Xe loaded LS

Phase I concept

KAMLAND merits

- Ultra low radioactivity environment based on ultra pure LS and
- □ 9m radius active shield: 38 U < 3.5 10⁻¹⁸ g/g 232 Th < 5.2 10⁻¹⁷ g/g
- No modification to the detector is necessary to accommodate DBD nuclei
- High sensitivity with low cost (~6M\$, budget secured) 60 meV in 1.5 years
- Reactor and geo- antineutrino observations continue
- High scalability (2nd phase)

Phase II

1000 kg 136Xe, improvement of energy resolution with light concentrators and brighter LS (~30M\$)

25 meV in 5 years

R&D items

- Xenon loaded LS with the same density, luminosity, transparency
- 2.7~4 m φ Mini-balloon
- Xenon purification, storage, extraction etc
- Cosmogenic background rejection with dead-time free electronics
KAMLAND sensitivity

1st phase

KKDC claim, degenerated hierarchy test

inverted hierarchy test

Target sensitivity of the 2nd phase is ~25 meV with 5 years

KAMLAND timeline

MAJORANA

Array of enriched Ge diodes operated in conventional Cu cryostats

Based on 60 Kg modules First step: Actively pursue the development of R&D aimed at a ~1 ton scale ⁷⁶Ge $\beta\beta(0\nu)$ -decay experiment.

Proved energy resolution: 0.16 % FWHM

Technical goal: Demonstrate background low enough to justify building a tonne scale Ge experiment.

Science goal: build a prototype module (60kg) to test the recent claim of an observation of $\beta\beta(0\nu)$. This goal is a litmus test of any proposed technology.

Work cooperatively with GERDA Collaboration to prepare for a single international tonne-scale Ge experiment that combines the best technical features of MAJORANA and GERDA.

Pursue longer term R&D to minimize costs and optimize the schedule for a 1tonne experiment.

MAJORANA: demonstrator module

⁷⁶Ge offers an excellent combination of capabilities & sensitivities.

Excellent energy resolution, intrinsically clean detectors, commercial technologies, best $0\nu\beta\beta$ sensitivity to date

60-kg of Ge detectors

- 30-kg of 86% enriched ⁷⁶Ge crystals required for science goal; 60-kg for background sensitivity
- Examine detector technology options
 focus on point-contact detectors for DEMONSTRATOR

Low-background Cryostats & Shield

- ultra-clean, electroformed Cu
- naturally scalable
- Compact low-background passive Cu and Pb shield with active muon veto

Agreement to locate at 4850' level at Sanford Lab

Background Goal in the $\beta\beta(0\nu)$ **peak ROI (4 keV at 2039 keV)**

~ 1 count/ROI/t-y (after analysis cuts)

MAJORANA: demonstrator schedule

