Introduzione alle masse e ai mescolamenti dei neutrini (II)

Eligio Lisi INFN, Bari, Italy

Outline:

Pedagogical Introduction Neutrino masses and spinor fields Neutrinoless double beta decay 2v & 3v oscillations in vacuum [Homework]

Ι

Recap 2v oscillations in matter Solar and KamLAND oscillations Absolute neutrino masses [Homework]

II

3v mass-mixing overview in just one slide (here, with 1 digit accuracy). Flavors = $e \mu \tau$

$$\begin{split} \delta m^2 &\sim 8 \times 10^{-5} \text{ eV}^2 & \sin^2 \theta_{12} \sim 0.3 \\ \Delta m^2 &\sim 3 \times 10^{-3} \text{ eV}^2 & \sin^2 \theta_{23} \sim 0.5 \\ m_\nu &< O(1) \text{ eV} & \sin^2 \theta_{13} < \text{few}\% \\ \text{sign}(\pm \Delta m^2) \text{ unknown} & \delta \text{ (CP) unknown} \end{split}$$

Implications of 3v mixing for $0v\beta\beta$ decay

For each mass state v_i , $0v\beta\beta$ amplitude proportional to:

... mixing of v_e with v_i ... mass of v_i ... mixing of v_i with v_e (times an unknown v_i phase)

Summing up for three massive neutrinos:

Amplitude ~ "effective Majorana mass"

$$m_{\beta\beta} = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$$

[complex linear combination of masses; $c_{ij} = \cos \theta_{ij}$ etc.]

Oscillations in vacuum: analogy with a two-slit experiment

This is the simplest case (only 2 neutrinos involved, no interactions with matter). It shows that, if neutrinos are massive and mixed (like quarks), then flavor is not a good quantum number during propagation. Indeed, it changes ("oscillates") significantly over a distance L ($\approx \Delta t$) dictated by the uncertainty relation:

$$P(\nu_{\alpha} \to \nu_{\beta}) = 4\sin^2\theta\cos^2\theta\sin^2\left(\frac{\Delta m_{ij}^2L}{4E}\right)$$

Neutrino flavor oscillations in matter

Neutrinos of all flavors ($v_{e, \mu, \tau}$) have the same amplitude for coherent forward scattering in matter via NC. However, only v_e can further scatter via CC, since ordinary matter contains e, not μ or τ . This fact implies a difference in the relative propagation of v_e versus $v_{\mu, \tau}$, (but not between v_{μ} and v_{τ}): the Mikheyev-Smirnov-Wolfenstein (MSW) effect.

 v_{μ} & v_{τ} (e.g., atmospheric) feel background fermions in the same way (through NC); no relative phase change while propagating (~ vacuum-like propagation, as anticipated)

But v_e , in addition to NC, have CC interac. with background electrons (density N_e). Energy difference: $V = +\sqrt{2} G_F N_e$ leads to a phase difference in matter Again, analogy with the two-slit experiment: one "arm" (flavor) feels a different "refraction index"

governed by the local (electron) density:

 $V(x) = V_e - V_{\mu,\tau} = \sqrt{2} G_F N_e(x) \quad [N_e = \text{electron density}]$

(-V for antineutrinos)

<u>Exercise 5</u>. Prove that oscillations between v_e and v_x (= v_{μ} , v_{τ}) in matter with constant density lead to Pontecorvo's formula

$$P(\nu_e \to \nu_x) = \sin^2 2\tilde{\theta} \sin^2 \left(\frac{\Delta \tilde{m}^2 L}{4E}\right)$$

with effective (tilde) parameters defined as

$$\frac{\Delta \tilde{m}^2}{\Delta m^2} = \frac{\sin 2\theta}{\sin 2\tilde{\theta}} = \sqrt{\left(\cos 2\theta - \frac{A}{\Delta m^2}\right)^2 + (\sin 2\theta)^2}$$
$$A = 2VE = 2\sqrt{2}G_F N_e E$$

where

Exercise 6 (Conversion factors). Prove that

$$\frac{A}{\Delta m^2} = 1.526 \times 10^{-7} \left(\frac{N_e}{\mathrm{mol/cm}^3}\right) \left(\frac{E}{\mathrm{MeV}}\right) \left(\frac{\mathrm{eV}^2}{\Delta m^2}\right)$$

Rule of thumb (~valid also for non-constant density):

Expect strong matter effects when $A/\Delta m^2 \sim O(1)$.

Note: matter effects are octant-asymmetric; need to unfold second octant.

Asymmetry is particular pronounced for solar neutrinos, with mass-mixing parameters (δm^2 , θ_{12})

[N.B.: Effects also depend on sign of squared mass difference: Handle to hierarchy discrimination.] Experiments sensitive to the "small" δm²: Solar neutrinos [see talk by E. Bellotti]

The Sun seen with neutrinos (SK)

Earth orbit from solar v (SK)

Production pp (+CNO) cycle

[See talk by A. Caciolli]

Experimental Results

All results in CC mode indicated a v_e deficit...

...as compared to solar model expectations Latest confirmation: BOREXINO [see talk by L. Ludhova]

Interpretation

The Sun is an intense source of v_e with E ~ $O(10^{\pm 1})$ MeV ...

... and its electron density range is ~ $O(10^{\pm 2})$ mol/cm³

...therefore, $A/\delta m^2 \sim O(1)$ if $\delta m^2 \sim O(10^{-10} - 10^{-3}) \text{ eV}^2$

The Sun is an ideal place to look for oscillations in matter, driven the "small" squared mass difference δm^2 (not the "large" Δm^2), and Nature has been kind enough to fulfill these expectations! The corresponding (solar) mixing angle is θ_{12}

Complications... (until a few years ago)

Large parameter space

Large literature on (semi)analytic or numerical solutions: constant density approximation generally not applicable But, in 2002 ("annus mirabilis"), one global solution was finally singled out by combination of data ("large mixing angle" or LMA). [See talk by E. Bellotti]

For the parameters $(\delta m^2, \theta_{12})$ in the LMA region, one can use the next approximation to "constant density," namely, the approximation of "slowly varying density" (with respect to oscillation frequency): adiabatic approximation (see Appendix)

Expected probability profile

In the Earth: small day/night (D/N) effects, not yet seen.

[See talk by L. Ludhova]

Also in 2002... KamLAND: 1000 ton mineral oil detector, "surrounded" by nuclear reactors producing anti-v_e. Characteristics:

A/ $\delta m^2 \ll 1$ in Earth crust (vacuum approxim. OK) L~100-200 km E_v~ few MeV

With previous $(\delta m^2, \theta_{12})$ parameters it is $(\delta m^2 L/4E) \sim O(1)$ and reactor neutrinos should oscillate with large amplitude (large θ_{12})

KamLAND results

2002: electron flavor disappearance observed

2004: half-period of oscillation observed

2007: one period of oscillation observed

Direct observation of δm^2 oscillations

$(\delta m^2, \theta_{12})$ - complementarity of solar/reactor neutrinos

Solar

More refined (3v) interpretation

Go beyond dominant 3v oscillations. Include subleading effects due to θ_{13} and averaged Δm^2 oscillations in vacuum/matter.

Interesting (small) effects emerge. [See arXiv:0806.2649].

Hint of θ_{13} >0 ? Time will tell.

Synopsis of neutrino mass² and mixing parameters: central values and n- σ ranges from global 3v analysis

TABLE I: Global 3ν oscillation analysis (2008): best-fit values and allowed n_{σ} ranges for the mass-mixing parameters.

Parameter	$\delta m^2/10^{-5}~{ m eV}^2$	$\sin^2 heta_{12}$	$\sin^2 heta_{13}$	$\sin^2 heta_{23}$	$\Delta m^2/10^{-3}~{ m eV}^2$
Best fit	7.67	0.312	0.016	0.466	2.39
1σ range	7.48 - 7.83	0.294 - 0.331	0.006 - 0.026	0.408 - 0.539	2.31 - 2.50
2σ range	7.31 - 8.01	0.278 - 0.352	< 0.036	0.366 - 0.602	2.19 - 2.66
3σ range	7.14 - 8.19	0.263 - 0.375	< 0.046	0.331 - 0.644	2.06 - 2.81

arXiv:0805.2517

Absolute neutrino masses: Current phenomenology Oscillations constrain neutrino mixings and mass splittings but not the absolute mass scale.

E.g., can take the lightest neutrino mass as free parameter:

However, the lightest neutrino mass is not really an "observable" We know three realistic observables to attack v masses \rightarrow

(m_β, m_{ββ}, Σ)

 β decay: m²_i ≠ 0 can affect spectrum endpoint. Sensitive to the "effective electron neutrino mass":

$$m_{\beta} = \left[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2\right]^{\frac{1}{2}}$$

2) $0\nu\beta\beta$ decay: Can occur if $m_i^2 \neq 0$ and $\overline{\nu}=\nu$ (Majorana, not Dirac) Sensitive to the "effective Majorana mass" (and phases):

$$m_{\beta\beta} = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$$

3) Cosmology: m²_i ≠ 0 can affect large scale structures in (standard) cosmology constrained by CMB + other data. Sensitive to:

$$\Sigma = m_1 + m_2 + m_3$$

Classic kinematic search for neutrino mass: look at high-energy endpoint Q of spectrum.

B-decay rate: drac GF x (phase sp.)

 $\begin{array}{c} & & & \\ &$

energy spectrum: $\frac{d\Gamma}{dE_{e}} \propto G_{F}^{2} p_{e} E_{e} (Q - E_{e})^{2} \qquad (M_{V} \equiv 0)$ $G_{F}^{2} p_{e} E_{e} (Q - E_{e}) (Q - E_{e})^{2} + M_{V}^{2} \qquad (>0)$

µ-decay

Ju = 1 ~ G_F^2 Mu Ju "defines" GF

For just one (electron) neutrino family: sensitivity to $m^2(v_e)$ (obsolete)

For three neutrino families v_i , and individual masses experimentally <u>unresolved</u> in beta decay: sensitivity to the sum of $m^2(v_i)$, weighted by squared mixings $|U_{ei}|^2$ with the electron neutrino. Observable:

$$m_{\beta} = \left[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2\right]^{\frac{1}{2}}$$

(so-called "effective electron neutrino mass")

Note: mass state with largest electron flavor component is v_1 : $|U_{e1}|^2 \approx \cos^2\theta_{12} \approx 0.7$... and we can't exclude that v_1 is ~massless in normal hierarchy.

In construction: KATRIN. Sensitivity:

• v-mass sensitivity for 3 'full beam' measuring years

Mainz + Troitsk: $m_{\beta} < 2 \text{ eV}$ KATRIN: O(10) improvement

Examples of prospective results at KATRIN (±1 σ , [eV]):

 $m_{\beta} = 0.35 \pm 0.07$ (5 σ discovery)

 $m_{\beta} = 0.30 \pm 0.10$ (3 σ evidence)

 $m_{\beta} = 0 \pm 0.12$ (<0.2 at 90% CL)

Need new ideas [MARE ?] to go below ~0.2 eV...

$0\nu\beta\beta$ decay: already discussed. Warning: might also arise from new physics!

[See talk by F. Feruglio]

However: whatever the mechanism...

Schechter & Valle, 1982 Independent of mechanism of 0νββ decay Majorana neutrino mass will appear in higher order!

(a "modern" probe)

Standard big bang cosmology predicts a relic neutrino background with total number density 336/cm³ and temper. T_v ~ 2 K ~ 1.7 × 10⁻⁴ eV << $\int \delta m^2$, $\int \Delta m^2$.

 \rightarrow At least two relic neutrino species are nonrelativistic today (we can't exclude the lightest to be ~ massless)

→Their total mass contributes to the normalized energy density as $\Omega_v \approx \Sigma/50$ eV, where

$$\Sigma = m_1 + m_2 + m_3$$

⇒So, if we just impose that neutrinos do not saturate the total matter density, $\Omega_v < \Omega_m \approx 0.25$, we get $\mathbf{m}_i < 4 \text{ eV} - \text{not bad!}$ Much better bounds can be derived from neutrino effects on structure formation.

Massive neutrinos are difficult to cluster because of their relatively high velocities: they suppress matter fluctuations on scales smaller than their mass-dependent free-streaming scale.

 \rightarrow Get mass-dependent suppression of small-scale structures

(E..g., Ma 1996)

[See talk by A. Melchiorri]

Hunting absolute masses... with a trident

$$m_{\beta} = \left[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2\right]^{\frac{1}{2}}$$
$$m_{\beta\beta} = \left|c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3}\right|$$
$$\Sigma = m_1 + m_2 + m_3$$

The "spear" (oscill. data) sets the "hunting direction" in the (m_{β} , $m_{\beta\beta}$, Σ) parameter space:

With "dreamlike" nonoscillation data one could, e.g.

We are still far from this situation (an example with ~2006 data):

Different choices \Rightarrow Different possible combinations (and implications)

Progress in Neutrino Physics is not just limited to cornering neutrino mass and mixing parameters... there is much more!

Vast lands to be explored ...

Conclusions and Open Problems

.

Great progress in recent years ... Neutrino mass & mixing: established fact Determination of $(\delta m^2, \theta_{12})$ and $(\Delta m^2, \theta_{23})$ Upper bounds on θ_{13} Observation of (half)-period of oscillations Direct evidence for solar v flavor change Evidence for matter effects in the Sun Upper bounds on v masses in (sub)eV range

Determination of θ_{13} Appearance of v_e , v_{τ} Leptonic CP violation Absolute m_v from β -decay and cosmology Test of $0v2\beta$ claim and of Dirac/Majorana vMatter effects in the Earth, Supernovae... Normal vs inverted hierarchy (Dis)confirmation of standard 3v scenario Deeper theoretical understanding Neutrino geo- and astro-physics

.

... and great challenges for the future!

The neutrino tree continues to grow.

Many opportunities open for your research activity!

Thank you for your attention.

NOW 2010 Poster: www.ba.infn.it/now

HOMEWORK

Solution 5

- Mass basis: $\begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$, $\Delta m^2 = m_2^2 m_1^2$ • Flavor basis: $\begin{pmatrix} Y_e \\ V_X \end{pmatrix} = \bigsqcup \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$; $Y_X = Y_{\mu_1 c}$; $\bigsqcup = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$
- Hamiltonian in vacuum, flavor basis (see Exercise 2): $H = \Box \begin{pmatrix} -\Delta m^{2} & 0 \\ 4E & 0 \\ 0 & +\Delta m^{2} \end{pmatrix} \Box^{T}$

• Hamilberian in matter, flaver basis: $H \rightarrow \tilde{H} = H + \begin{pmatrix} V & 0 \\ 0 & 0 \end{pmatrix}$ with $V = \sqrt{2} G_F N e$ (extra $\frac{V}{2} e ungy in matter)$

• It is convenient to put \tilde{H} in tracelen form (extract tr(\tilde{H}).1): $\tilde{H} = \frac{1}{4E} \begin{bmatrix} A - \cos 2\theta \Delta m^2 & \sin 2\theta \Delta m^2 \\ \sin 2\theta \Delta m^2 & -A + \cos 2\theta \Delta m^2 \end{bmatrix}$, A = 2VE

(diagonalization becomes easier).

Solution 5 (ctd)

- Eigenvalues of \tilde{H} : $\pm \Delta \tilde{m}^2$ with $\Delta \tilde{m}^2 = \Delta m^2 \sqrt{(\cos 2\theta \frac{A}{\Delta m^2})^2 + \delta m^2 2\theta}$
- Diagonalizing robation: $\begin{aligned}
 \widetilde{H} &= \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} -\frac{d \widetilde{M}^2}{4\varepsilon} & 0 \\ 0 & +\frac{d \widetilde{M}^2}{4\varepsilon} \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \\
 \end{aligned}$ With $\sin 2\theta &= \frac{\sin 2\theta}{\sqrt{(\cos 2\theta - \frac{A}{dw^2})^2 + \sin^2 2\theta}}; \quad \cos 2\theta &= \frac{\cos 2\theta - \frac{A}{dw^2}}{\sqrt{(\cos 2\theta - \frac{A}{dw^2})^2 + \sin^2 2\theta}} \\$ Thus a is analogous to the vacuum case, with the replacement $\theta \rightarrow \theta$ and $\Delta m^2 \rightarrow \Delta \widetilde{M}^2$. [Note that $\Delta \widetilde{M}^2 \sin 2\theta = \Delta m^2 \sin^2 \theta$]. If $A = \cosh (i.e., \theta is constant)$, then the evolution operator can be obtained by exponentiation as in Exercise 2. Then one gets
- be obtained by experientiation as in Exercise 2. Then one gets in a similar way: $P(re \rightarrow V_X) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{\Delta F}\right)$.

Solution 6

Let's prove first that
$$1 \frac{mvl}{cu_{13}} = 4.267 \times 10^{-9} \text{ MeV}^{3}$$

with $1 mvol = 6.022 \times 10^{23} \text{ particles (Avogandro number) :}$
 $1 \frac{mvl}{cu_{13}} = \frac{6.022 \times 10^{23}}{10^{-6} m^{3}} \left(\frac{MeV^{3}}{MeV^{3}}\right) = 6.022 \times 10^{29} \frac{\Lambda}{(m \cdot MeV)^{3}} \frac{MeV^{3}}{(5.0677 \times 10^{12})^{3}} \frac{6.022 \times 10^{29}}{(5.0677 \times 10^{12})^{3}} \frac{MeV^{3}}{(5.0677 \times 10^{12})^{3}}$
 $= 4.627 \times 10^{-9} \text{ MeV}^{3}$

Then:
$$A = 2\sqrt{2} G_{F} N_{e} E$$
 with $G_{F} = 1.16637 \times 10^{-5} G_{eV}^{-2} = 1.16637 \times 10^{-11} M_{eV}^{-2} (Fermi coust.)$

$$\frac{A}{\Delta u_{1}^{2}} = \frac{2\sqrt{2} G_{F} N_{e}}{\Delta u_{1}^{2}} = 2\sqrt{2} (1.16637 \times 10^{-11} M_{eV}^{-2}) \left(\frac{N_{e}}{mot/cun^{3}} \cdot mot/cun^{3}}\right) \left(\frac{E}{Nev} \cdot M_{eV}\right) \left(\frac{ev^{2}}{\Delta u_{1}^{2}} \cdot \frac{1}{ev_{2}}\right)$$

$$= 3.299 \times 10^{-11} \frac{M_{eV}^{-2} M_{eV}}{eV^{2}} \frac{M_{eV}}{cun^{3}} \left(\frac{N_{e}}{mot/cun^{3}}\right) \left(\frac{E}{Mev}\right) \left(\frac{eV^{2}}{\Delta u_{1}^{2}}\right)$$

$$3.299 \times 10^{-11} \frac{M_{eV}^{-2} M_{eV}}{eV^{2}} \frac{m_{eV}}{cun^{3}} = 3.299 \times 10^{-11} \frac{10^{12}}{M_{eV}^{3}} \times 4.627 \times 10^{-9} M_{eV}^{3} = 1.526 \times 10^{-7}$$

$$\frac{A}{\Delta u_{1}^{2}} = 1.526 \times 10^{-7} \left(\frac{N_{e}}{mot/cun^{3}}\right) \left(\frac{E}{Nev}\right) \left(\frac{eV^{2}}{\Delta u_{1}^{2}}\right)$$

Appendix: Adiabatic approximation

Adiabatic 2v case

Prove that, if Ne(X) changes "slowly" from $X = X_i$ to $X = X_f$, then the AVERAGE survival probability $P(r_e \rightarrow r_e)$ is given by:

$$P_{ee}^{(2\nu)}(aoliab.) = \cos^2 \widehat{\Theta_i} \cos^2 \widehat{\Theta_f} + \sin^2 \widehat{\Theta_i} \sin^2 \widehat{\Theta_f}$$

where Θ_i and Θ_f are the effective mixing angles in matter at x=xi and x=xf.

This is a good approximation for solar Ve's, for the $(\delta m_i^2, \theta_{12})$ parameters chosen by nature !

Solution:

For a quasi-constant hamiltonian, one can solve the evolution equation at "one x" at a time, and then patch the solutions from x; to xf. This means that, given the initial state $|\gamma_e^i\rangle = \cos\theta_i |\tilde{\gamma_i}^i\rangle + \sin\theta_i |\tilde{\gamma_i}^i\rangle$, the effective eigenstates of the hamiltonian at $x = x_i$ $(1\tilde{\gamma_i}, i)$ slowly transform into $|\tilde{\gamma_i}, i\rangle$ at $x = x_f$, respectively:

$$\begin{split} |\widetilde{v}_{1}^{i}\rangle & \rightarrow |\widetilde{v}_{1}^{f}\rangle \quad \text{with} \quad \left| \langle v_{1}^{f} | v_{1}^{a} \rangle \right| = 1 \\ |\widetilde{v}_{2}^{i}\rangle & \rightarrow |\widetilde{v}_{2}^{f}\rangle \quad \text{with} \quad \left| \langle v_{2}^{f} | v_{2}^{i} \rangle \right| = 1 \\ \text{and} \quad \left| \langle v_{2,1}^{f} | v_{1,2}^{i} \rangle \right| = 0 \\ (\text{no "level crossing"}) \\ |v_{e}^{f}\rangle &= \cos\theta_{f} | v_{1}^{f}\rangle + \sin\theta_{f} | v_{2}^{f}\rangle \end{split}$$

We have then : $P_{ee}^{2v} = |\langle v_e^{f} | v_e^{i} \rangle|^2 =$ = $|\cos\theta_i \cos\theta_f < v_i^f | v_i^i > + \sin\theta_i \sin\theta_f < v_2^f | v_2^i > |^2$. If we average out interference terms and phases (OK for many/fast oscillations along the v trajectory): $P_{ee}^{2v} \simeq \cos^2 \theta_i \cos^2 \theta_f |\langle v_4^f | v_4^i \rangle|^2 + \sin^2 \theta_i \sin^2 \theta_f |\langle v_2^f | v_2^i \rangle|^2$ $= \cos^2 \theta_i \cos^2 \theta_f + \sin^2 \theta_i \sin^2 \theta_f$ [Solar v's oscillate many times from Sun to Earth] [for dui2~7.7×10-5 ev2.]

Equivalent form: $Pee^{2v} = \frac{1}{2} + \frac{1}{2}\cos 2\theta_i \cos 2\theta_j$

Application to solar γ_e : $\theta = \theta_{12}$; $\theta_{12}(x_f) = \theta_{12}$ (vacuum value at exit from the sun) $P_{ee}^{2\nu}(sdar) \simeq \cos^2 \theta_{12} \cos^2 \theta_{12}(x_0) + \sin^2 \theta_{12} \sin^2 \theta_{12}(x_0)$ where $\theta(x_0)$ is the effective mixing angle at production point x_0 . limiting cases:

- E \leq few MeV (vacuum-dominated) : $A/\delta m^2 \leq 1$ $\rightarrow \tilde{\theta}_{12}(x_0) \simeq \theta_R$ and Pee $\simeq C_{12}^4 + S_{12}^4 = 1 - \frac{1}{2} \sin^2 2\theta_{12}$ \rightarrow Pee equals the average vacuum probability
- E \gtrsim few MeV (matter dominated): $A/\delta m^2 \gtrsim 1$ $\rightarrow \hat{\Theta}_{12}(\infty) \sim T1/2$ and $Pee \simeq sin^2 \Theta_{12}$ $\rightarrow Pee$ is octant asymmetric

Energy profile of Pee:

The Pee transition from "low" to "high" evergy re's is a signature of matter effects.

Thanks to matter effects we can determine the ochant of the mixing angle Θ_{12} .