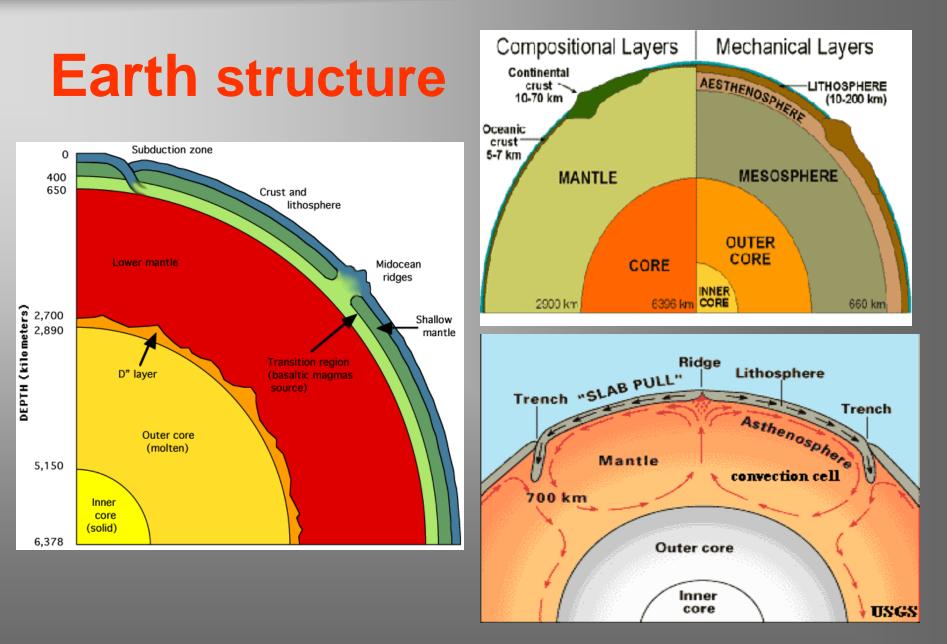
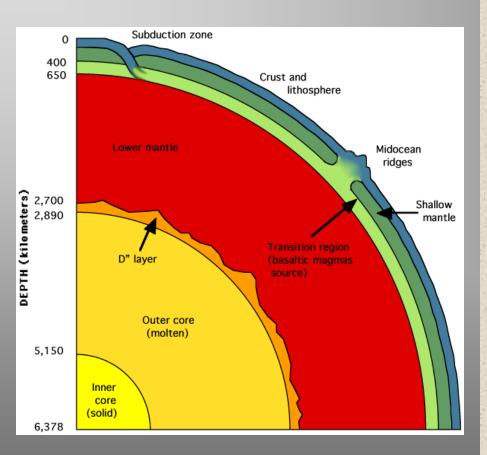
Geoneutrinos and Borexino



Livia Ludhova

May 5th, 2010, Scuola Neutrini, Padova


Outline

- The Earth
 - structure and composition ;
 - sources of knowledge (geophysics, geology, and geochemistry);
- Geoneutrinos:
 - what are they and to what questions they can answer;
- Borexino:
 - experimental techniques and the detector;
- Antineutrino detection in Borexino:
 - the background sources and reactor antineutrinos;
 - the geoneutrino signal;
- Geoneutrino flux measurement:
 - the results;
 - implications and perspectives;

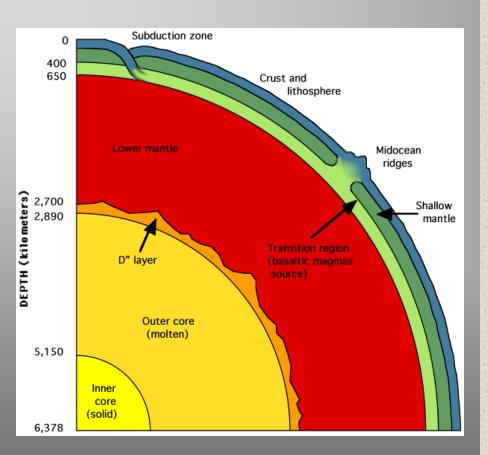
May 5th, 2010, Scuola Neutrini, Padova

Earth structure

Inner Core - SOLID

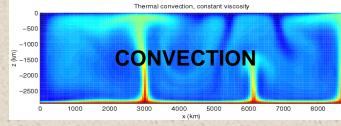
- about the size of the Moon;
- Fe Ni alloy;
- solid (high pressure ~ 330 GPa);
- temperature ~ 5700 K;

Outer Core - LIQUID


- 2260 km thick;
- FeNi alloy + 10% light elem. (S, O?);
- liquid;
- •temperature ~ 4100 5800 K;
- **geodynamo:** motion of conductive liquid within the Sun's magnetic field;

D" layer: mantle -core transition

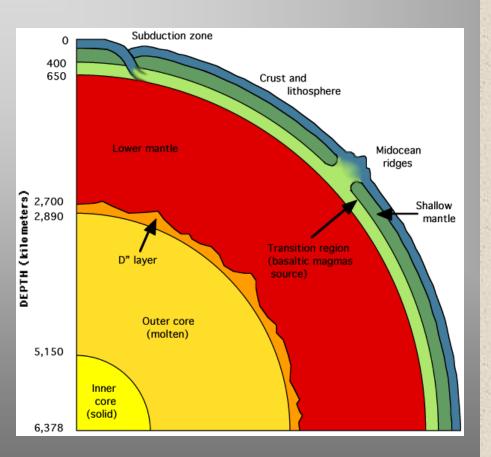
- ~200 km thick;seismic discontinuity;
- unclear origin;


May 5th, 2010, Scuola Neutrini, Padova

Earth structure

Lower mantle (mesosphere)

- rocks: high Mg/Fe, < Si + Al;
- T: 600 3700 K;
- high pressure: solid, but viscose;
- "plastic" on long time scales:


Transition zone (400 -650 km)

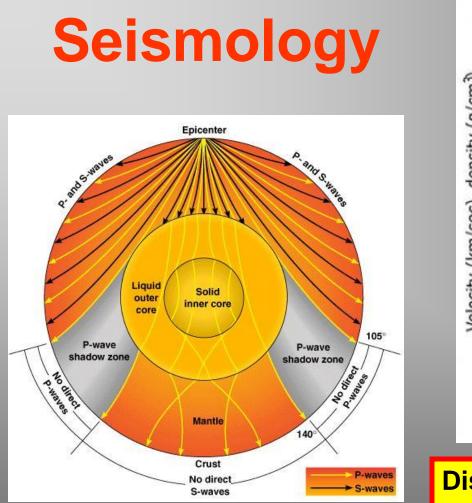
seismic discontinuity;

- mineral recrystallisation;
- •: role of the latent heat?;
- partial melting: the source of midocean ridges basalts;

May 5th, 2010, Scuola Neutrini, Padova

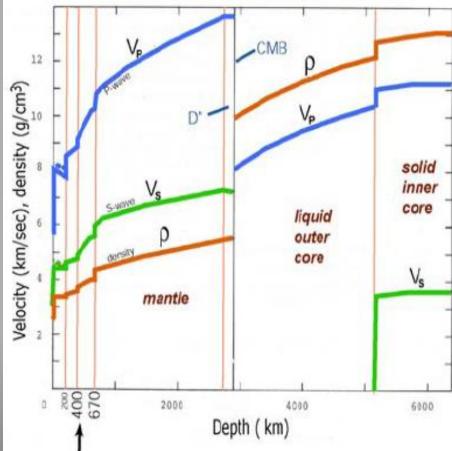
Earth structure

Upper mantle


- composition: rock type peridotite
- includes highly viscose
 astenosphere on which are floating
 litospheric tectonic plates
 (lithosphere = more rigid upper mantle + crust);

Crust: the uppermost part

• OCEANIC CRUST:


- created at mid-ocean ridges;
- ~ 10 km thick;
- <u>CONTINENTAL CRUST</u>:
- the most differentiated;
- 30 70 km thick;
- igneous, metamorphic, and sedimentary rocks;
- obduction and orogenesis;

May 5th, 2010, Scuola Neutrini, Padova

P – primary, longitudinal wavesS – secondary, transverse/shear waves

May 5th, 2010, Scuola Neutrini, Padova

Discontinuities in the waves propagation and the density profile but no info about the chemical composition of the Earth

Geochemistry

1) Direct rock samples

* surface and bore-holes (max. 12 km);

* mantle rocks brought up by tectonics and **vulcanism**; BUT: POSSIBLE ALTERATION DURING THE TRANSPORT

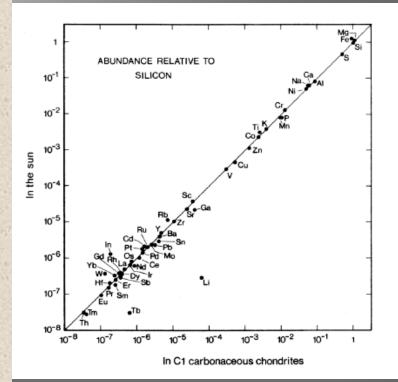
2) Geochemical models:

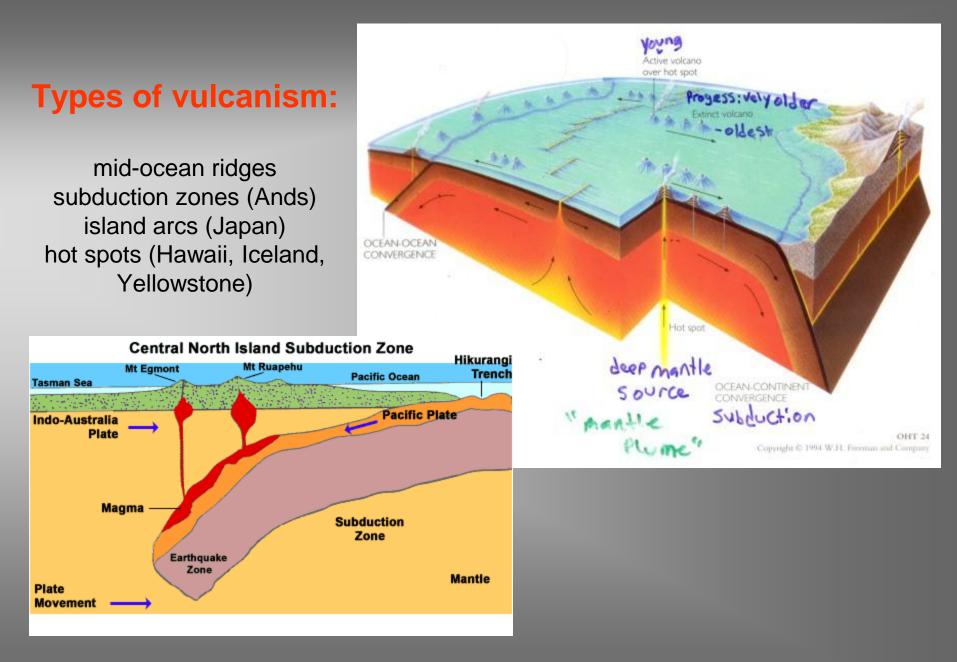
composition of direct rock samples + chondritic meteorites + Sun;

Bulk Silicate Earth (BSE) models:

medium composition

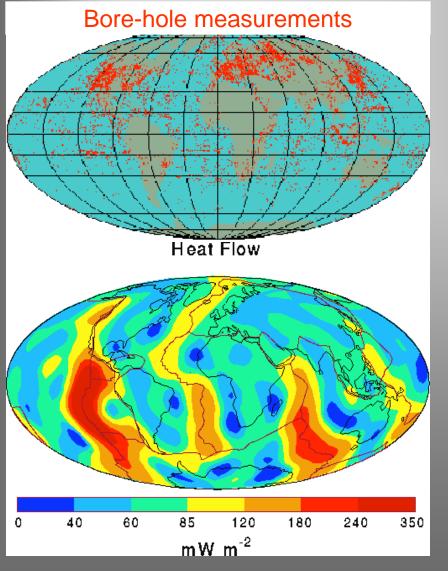
of the "re-mixed" crust + mantle,


i.e., primordial mantle before the crust differentiation and after the Fe-Ni core separation;


(original: McDonough & Sun 1995)

- absolute BSE abundances varies within 10% based on the model;
- ratios of BSE element abundances more stable in different calculations:
 - Th/U = 3.9
 - K/U = 1.14 x 10⁴

May 5th, 2010, Scuola Neutrini, Padova



May 5th, 2010, Scuola Neutrini, Padova

Earth heat flow

- Conductive heat flow from bore-hole temperature gradient;
- Total heat flow : 31<u>+</u>1 TW or 44<u>+</u>1 TW (same data, different analysis)

Different assumptions concerning the role of fluids in the zones of mid ocean ridges.

Global Heat Flow Data (Pollack *et al.*)

May 5th, 2010, Scuola Neutrini, Padova

Sources of the Earth heat

- Total heat flow ("measured"): 31+1 or 44+1 TW
- Radiogenic heat flow (BSE composition) cca. 19 TW the main long-lived radioactive elements within the Earth: ²³⁸U, ²³²Th, and ⁴⁰K 9 TW crust (mainly continental), 10 TW mantle, 0 TW core;
 - U, Th, K are refractory lithophile elements (RLE)

Volatile /Refractory: Low/High condensation temperature **Lithophile** – like to be with silicates: during partial melting they tend to stay in the liquid part. The residuum is depleted. Accumulated in the continental crust. Less in the oceanic crust. Mantle even smaller concentrations. Nothing in core.

- Other heat sources (possible deficit of 44-19 = 25 TW!)
 - Residual heat: gravitational contraction and extraterrestrial impacts in the past;
 - ⁴⁰K in the core;
 - nuclear reactor; (BOREXINO rejects a power > 3 TW at 95% C.L.)
 - mantle differentiation and recrystallisation;

IMPORTANT MARGINS FOR ALL DIFFERENT MODELS OF THE EARTH STRUCTUE

Geoneutrinos: antineutrinos from the Earth

 238 U, 232 Th, 40 K chains (T_{1/2} = (4.47, 14.0, 1.28) x 10⁹ years, resp.):

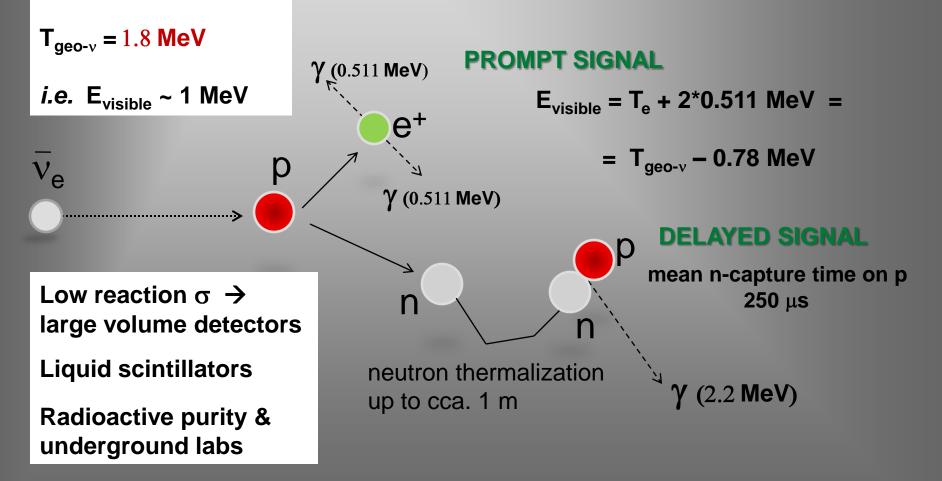
 $^{238}U \rightarrow ^{206}Pb + 8 \alpha + 8 e^{-} + 6 anti-neutrinos + 51.7 MeV$

²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4 e^{-} + 4 anti-neutrinos + 42.8 MeV

 40 K \rightarrow 40 Ca + e^{-} + 1 anti-neutrino + 1.32 MeV

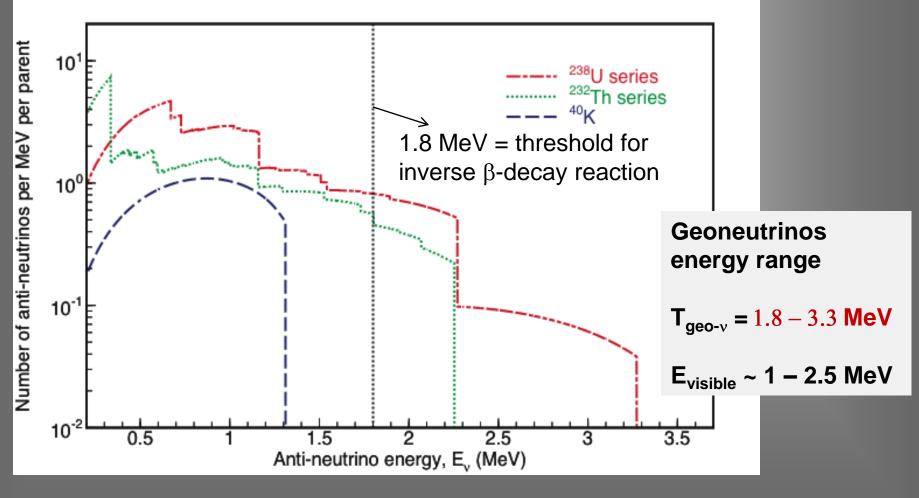
Earth shines in antineutrinos: flux ~ 10⁶ cm⁻² s⁻¹ leaving freely and instantaneously the Earth interior (to compare: solar neutrino flux ~ 10¹⁰ cm⁻² s⁻¹)

– released heat and anti-neutrinos flux in a well fixed ratio!

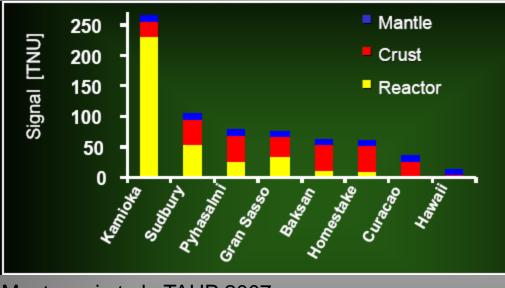

Possible answers to the questions:

- What is the radiogenic contribution to the terrestrial heat??
- What is the distribution of the radiogenic elements within the Earth?
 - how much in the crust and mantle
 - core composition: Ni+Fe and ⁴⁰K?? geo-reactor ? (Herndon 2001)
- Is the BSE model compatible with geoneutrino data?

May 5th, 2010, Scuola Neutrini, Padova


Detecting geo-ν: inverse β-decay

Energy threshold of


May 5th, 2010, Scuola Neutrini, Padova

Geoneutrinos energy spectra (theoretical calculations)

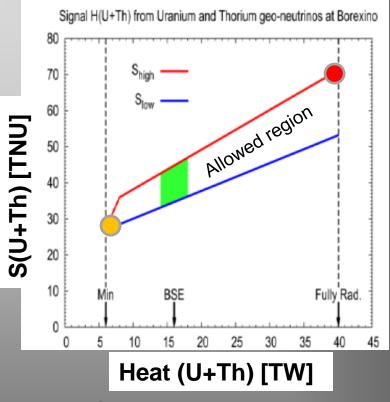
May 5th, 2010, Scuola Neutrini, Padova

Running and planned experiments having geoneutrinos among their aims

Mantovani et al., TAUP 2007

Only 2 running experiments having a potential to measure geoneutrinos

KamLand in Kamioka, Japan S(reactors)/S(geo) ~ 6.7 OCEANIC CRUST Borexino in Gran Sasso, Italy S(reactors)/S(geo) ~ 0.3 !!! (2010) CONTINENTAL CRUST


May 5th, 2010, Scuola Neutrini, Padova

Expected geoneutrino signal at Borexino site

Allowed region – consistent with geophysical & geochemical data

Slope – fixed by the reactions energetics Intercept + width – site dependent, U+Th distribution

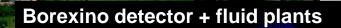
- Region allowed by the BSE geochemical model
- \bigcirc
- Minimum from known U+Th concentrations in the crust
- Maximum given by the total Earth heat flow

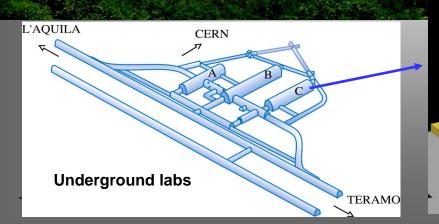
for LNGS Mantovani et al., TAUP 2007

1 TNU (Terrestrial Neutrino Unit) = 1 event/ 10^{32} protons/year

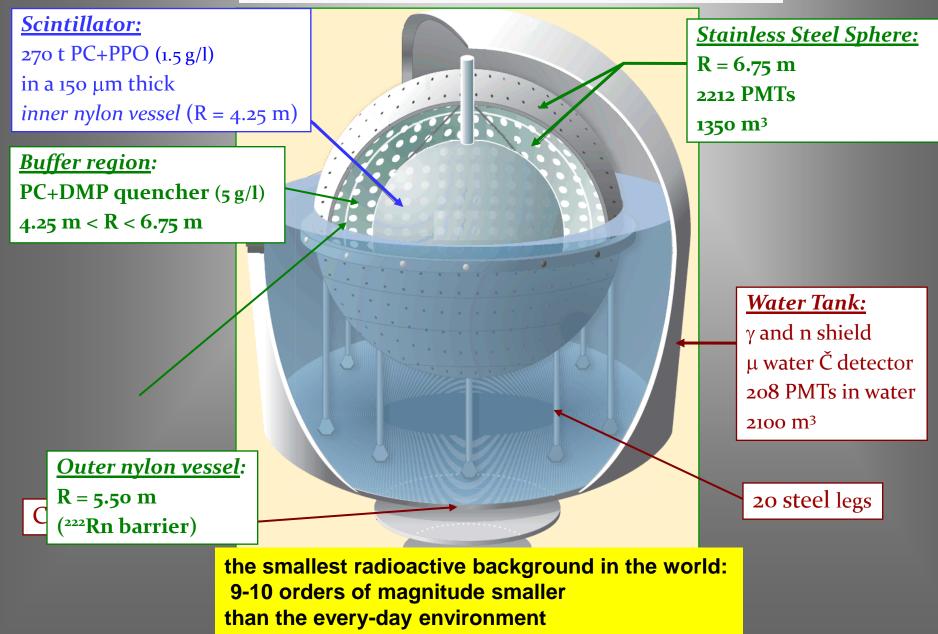
Important local geology: cca. half of the signal comes from within 200 km range!!

May 5th, 2010, Scuola Neutrini, Padova

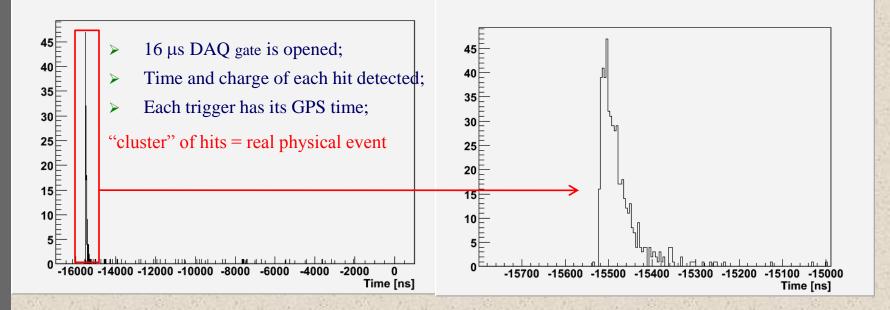

Abruzzo 120 Km from Rome



Laboratori Nazionali del Gran Sasso


Assergi (AQ) Italy ~3500 m.w.e

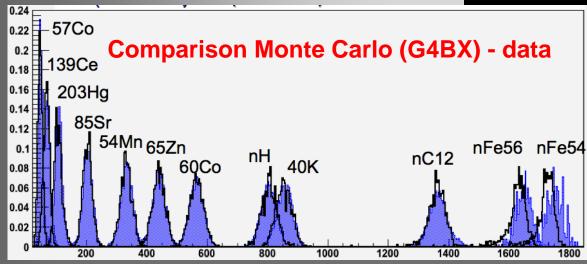
External Laboratories


Borexino Detector

Data acquisition and data structure

Charged particles and γ produce scintillation light: photons hit inner PMTs;

• DAQ trigger: > 25 inner PMTs (from 2212) are hit within 60-95 ns:


Outer detector gives a muon veto if at least 6 outer PMTs (from 208) fire;

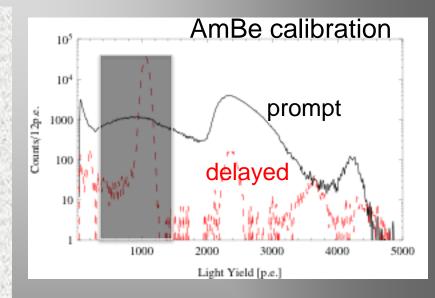
Calibration

With α , β , γ and neutron sources in 300 positions on and off axis

Source inside Borexino

Energy resolution 10% @ 200 keV 8% @ 400 keV 6% @ 1 MeV

Spatial resolution

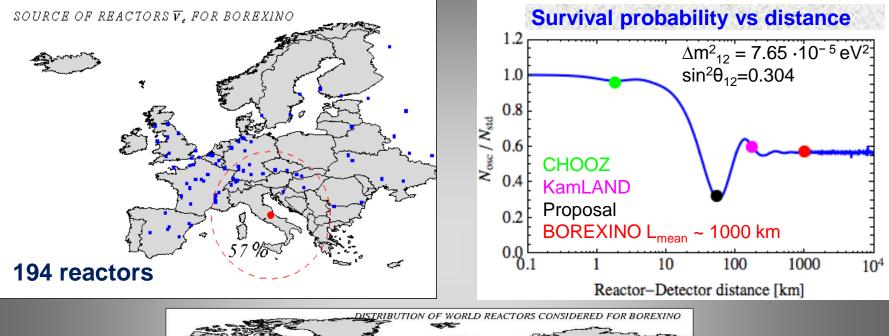

35 cm @ 200 keV 16 cm @ 500 keV

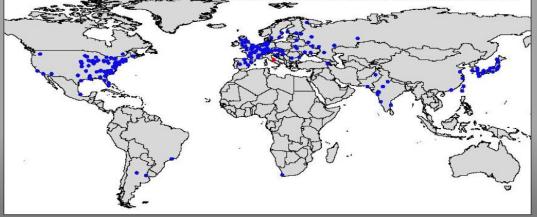
Event selection

An anti-neutrino candidate is selected using the following cuts

- 1) Light yield of prompt signal > 410 p.e.
- 2) Light yield of delayed signal:
 700p.e. ≤ Q_{delayed} ≤ 1250p.e.
- 3) Correlated time: $2 \mu s \le \Delta t \le 1280 \mu s$
- 4) Correlated distance $\Delta R < 1m$
- 5) Reconstructed vertex of prompt signal: R_{InnerVessel} - R_{prompt} ≥ 25 cm

Total detection efficiency determined by MC simulations: 0.85 0.01




Selected events can be due to:

- geoneutrinos;
- reactor antineutrinos;
- background ;

May 5th, 2010, Scuola Neutrini, Padova

Reactors

245 world non European reactors: ~2% contribution

May 5th, 2010, Scuola Neutrini, Padova

Calculation of reactor anti-v signal

$$\Phi\left(E_{\bar{v}_{e}}\right) = \sum_{r=1}^{N_{react}} \sum_{m=1}^{N_{month}} \frac{T_{m}}{4\pi L_{r}^{2}} P_{rm} \sum_{i=1}^{4} \frac{f_{ri}}{E_{i}} \Phi_{i}\left(E_{\bar{v}_{e}}\right) P_{ee}\left(E_{\bar{v}_{e}};\hat{\vartheta},L_{r}\right)$$

From the literature: E_i: energy release per fission of isotope i (Huber-Schwetz 2004); Φ_i: antineutrino flux per fission of isotope i (polynomial parametrisation, H-Sch'04); P_{ee}: oscillation survival probability; Calculated: T_m: live time during the month m; L_r: reactor r – Borexino distance;

Data from nuclear agencies:

- Prm: thermal power of reactor r in month m (IAEA, EDF, and UN data base);
- fri: power fraction of isotope i in reactor r;

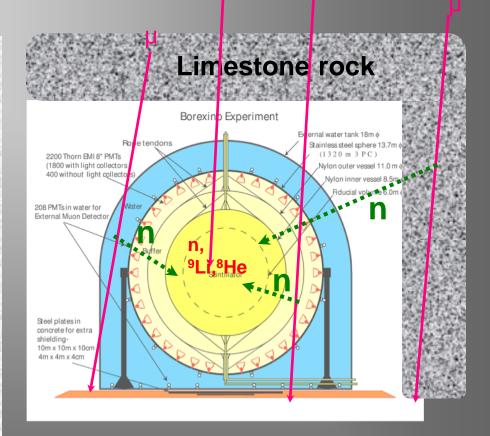
May 5th, 2010, Scuola Neutrini, Padova

Expected signal and its error

 Φ_{v} (E_v>1.8 MeV)= (9.0 <u>+</u>0.5)10⁴ cm⁻²s⁻¹ \longrightarrow (5.7<u>+</u>0.3) events/yr/100 t

		$\sigma \sim 10^{-44} \mathrm{cm}^2 \mathrm{N}_{\mathrm{protons}} = 6 \times 10^{30} \mathrm{in} 100 \mathrm{tons}$
Source of error	Error (%)	
Oscillations: Δm ²	±0.02%	Energy spectrum of prompt events
Oscillations: ϑ₁₂	±2.6%	235U RMS 1.296
Energy per fission of isotope i: Ei	±0.6%	235U 239Pu 238U
Flux shape: Φi(Ev)	±2.5%	
Cross section: $\sigma(E)$	±0.4%	0.06 $\int \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
Thermal power: Prm	±2%	E / A Sum NO oscil
Long lived isotopes in spent fuel	±1%	
Fuel composition: f _{ri}	±3.2%	
Reactor – Borexino distance Lr	±0.4%	Prompt energy (MeV)
TOTAL	±5.38%	

May 5th, 2010, Scuola Neutrini, Padova


Background sources

Reactions which can mimick the golden coincidence:

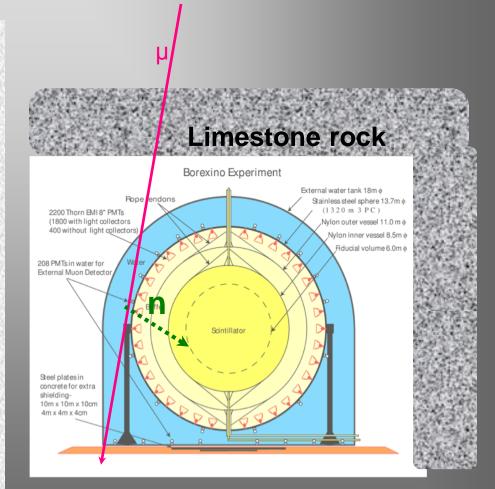
- 1) Cosmogenic muon induced:
- •⁹Li e ⁸He decaying β–n;
 •neutrons of high energies; neutrons scatters proton = prompt; neutron is captured = delayed;
 •Non-identified muons;

2) Accidental coincidences;

3) Due to the internal radioactivity: (α,n) and (γ,n) reactions

May 5th, 2010, Scuola Neutrini, Padova

Muons crossing the OD


• To remove fast neutrons originated in the Water Tank we apply a 2 ms (~ 8 neutron capture livetimes) veto after each detected muon by the OD;

 In correlation with OD tagged muons we have observed 2 fake anti-v candidates;

The inefficiency of OD muon veto is
 5 10^{-3;}

• For this background we can set an upper limit of

< 0.01 events/(100 ton-year) at 90% C.L.

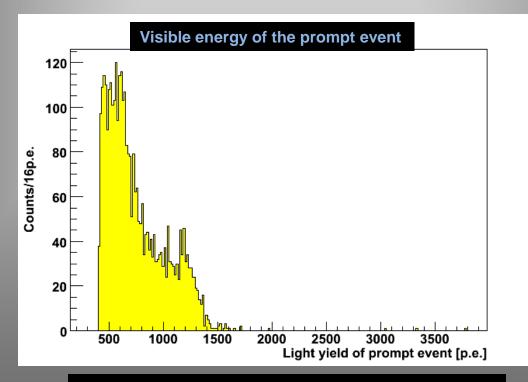
May 5th, 2010, Scuola Neutrini, Padova

⁹Li-⁸He background

Isotope	T _{1/2} [ms]	Decay mode	BR [%]	Q _β [MeV]
⁸ He	119.0	β + n	16	5.3, 7.4
⁹ Li	178.3	β + n	51	1.8, 5.7, 8.6, 10.8, 11.2

- induced by cosmogenic muons;
- we 2 s (several livetimes) after each internal μ;
- from this cut is implied 10% reduction of live time (muon flux ~ 4300/day);
- •as a background for geov we calculate the exponential tail at time > 2 s;

51 candidates

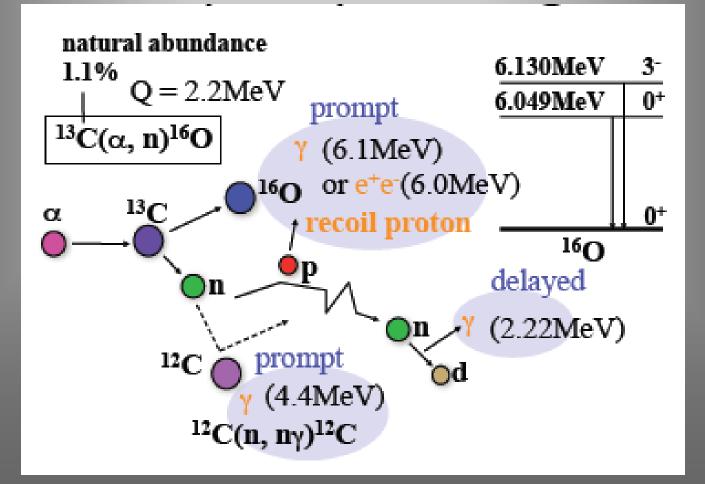

Rate of coincodences: 15.4 events/100 tons/year

Bgr for geonu: < 0.03± 0.02 ev/100 tons/year

May 5th, 2010, Scuola Neutrini, Padova

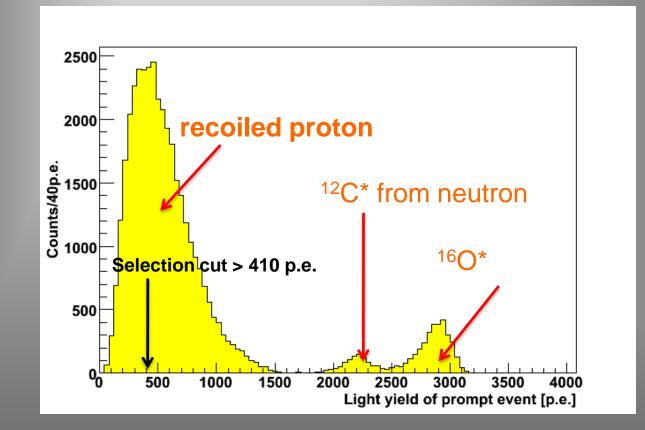
Accidental coincidences

•Same cuts, just dt instead of 20-1280 μ s is 2-20 s in order to maximise the statistics and so minimise the error;



0.080 0.001 events/(100ton-year)

May 5th, 2010, Scuola Neutrini, Padova

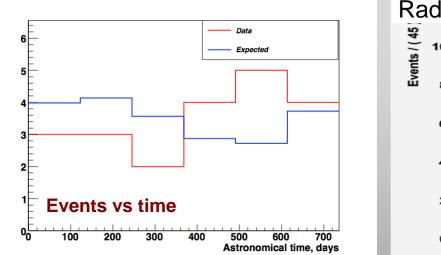

¹³C(α,n)¹⁶O

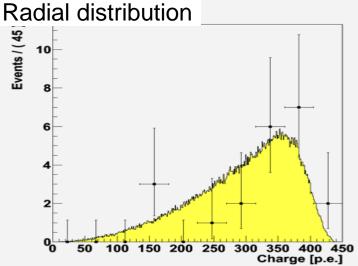
2) Isotopic abundance of ¹³C: 1.1%
3) ²¹⁰Po contamination: A_{Po}~ 12 cpd/ton
4) E_α=5.3 MeV: E_{neutrone} ≤ 7.29 MeV for transition to the ground state

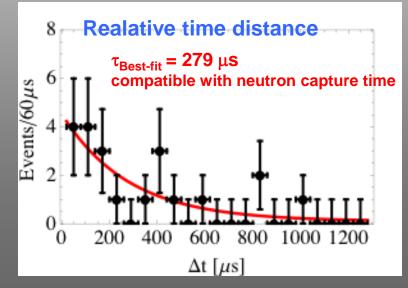
MC for ¹³**C** $(\alpha, n)^{16}$ **O**

Probability for ²¹⁰Po nucleus to give (a, n) in pure ¹³C (6.1 \pm 0.3) 10⁻⁶ (Mc Kee 2008). In PC it corresponds to (5.0 \pm 0.8)10⁻⁸

(0.014+0.001) events/(100 tons yr)

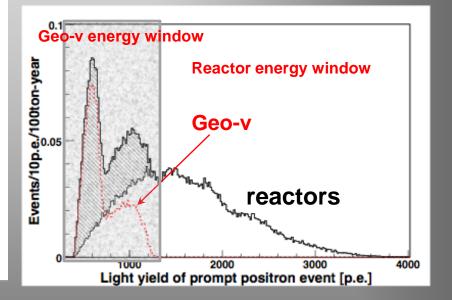

May 5th, 2010, Scuola Neutrini, Padova


Summary of backgrounds


Background source	events/(100 ton-year)		
Cosmogenic ⁹ Li and ⁸ He	0.03 ± 0.02		
Fast neutrons from μ in Water Tank (measured)	< 0.01		
Fast neutrons from µ in rock (MC)	< 0.04		
Non-identified muons	0.011 ± 0.001		
Accidental coincidences	0.080 ± 0.001		
Time correlated background	< 0.026		
(γ,n) reactions	< 0.003		
Spontaneous fission in PMTs	0.003 ± 0.0003		
(α,n) reactions in the scintillator [²¹⁰ Po]	0.014 ± 0.001		
(α,n) reactions in the buffer [²¹⁰ Po]	< 0.061		
TOTAL	0.14 ± 0.02		
Aspettiamo: 2.5 geo-v/(100ton-ye	r) (assuming BSE)		

May 5th, 2010, Scuola Neutrini, Padova

Results: 21 candidates selected in 483 live days (252.6 ton-year after all cuts)


May 5th, 2010, Scuola Neutrini, Padova

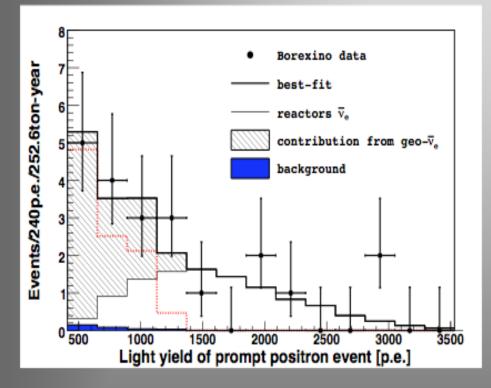
Shape of the expected spectra

Theoretical spectra: input to MC

Beergy of prompt positron event [MeV]

MC output: includes detector response function

USED IN THE UNBINNED MAXIMUM LIKELIHOOD FIT OF THE DATA


May 5th, 2010, Scuola Neutrini, Padova

Candidates vs Poisson probabilities

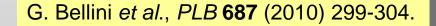
	Predicted from reactors	Background	Observed	Probability to get N≥N _{obs}	Probability to get N≤N _{obs}
Geo-v window	5.0 0.3	0.31 0.05	15	5 10⁻⁴ (3.5σ)	
Reactor-v window without oscillations	16.3 1.1	0.09 0.06	6		5 10 ⁻³ (2.9σ)

May 5th, 2010, Scuola Neutrini, Padova

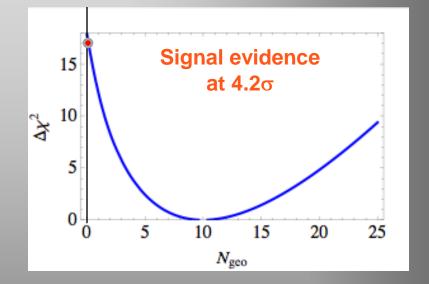
Unbinned max. likelihood fit of data

unbinned since small statistics;

-just the result is plot in a binned spectrum;


 result of the fit: amplitudes of the geo and reactor anti-v spectra;

$$N_{geo} = 9.9^{+4.1}_{-3.4} + 14.6_{-8.2}$$


May 5th, 2010, Scuola Neutrini, Padova

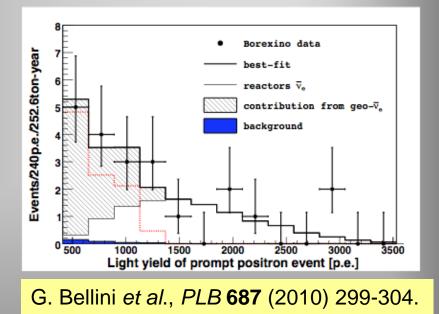
$$N_{react} = 10.7^{+4.3}_{-3.4} \, {}^{+15.8}_{-8.0}$$

Statistical significance of the result

68%, 90% and 99.73% C.L. 30 25 20 $N_{\rm geo}$ 15 Max radiogenic 10 BSE 5 Min radiogenic 0 0 5 15 25 10 20 30 $N_{\rm react}$

Source	Geo– $\bar{\nu}_e$ Rate
	$[\text{events}/(100 \text{ton} \cdot \text{yr})]$
Borexino	$3.9^{+1.6}_{-1.3}$
BSE [16]	$2.5^{+0.3}_{-0.5}$
BSE [30]	$2.5{\pm}0.2$
BSE[5]	3.6
Max. Radiogenic Earth	3.9
Min. Radiogenic Earth	1.6

Livia Ludhova


May 5th, 2010, Scuola Neutrini, Padova

KamLand "indication" at 2.5σ

S. Abe *et al.*, *PRL* **100** (2008) 221803. May 5th, 2010, Scuola Neutrini, Padova

Borexino "observation" at 99.997% C.L.

Competition?

In fact it is **complementarity**!!

KamLand: oceanic crust Borexino: continental crust

Summary of results and perspectives

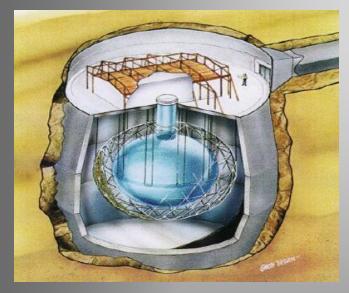
Borexino results on geoneutrinos:

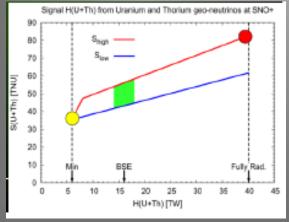
- the first clear observation of geoneutrinos at 4.2σ ;
- the first measurement of oscillations (reactor antinu) at 1000 km @ 2.9σ ;
- georeactor in the Earth core with > 3 TW rejected at 95% C.L.;

Perspectives with Borexino:

- accumulating statistics confirmation of BSE/fully radiogenic Earth??
- spectroscopy U/Th ratio???

Perspectives in the world:


- future big experiments (LENA, 1000 events/year!!)
- contribution from the mantle (directionality measurement, Hanohano with 10 kton on the ocean floor, measurements at different sites);


May 5th, 2010, Scuola Neutrini, Padova

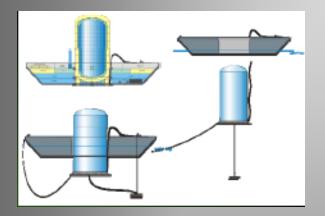
Future experiments

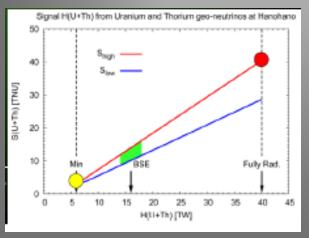
May 5th, 2010, Scuola Neutrini, Padova

SNO+ at Sudbury, Canada

Mantovani et al., TAUP 2007

After SNO: D₂O replaced by 1000 tons of liquid scintillator M. J. Chen, *Earth Moon Planets* **99**, 221 (2006)


Placed on an old continental crust: 80% of the signal from the crust (Fiorentini et al., 2005)

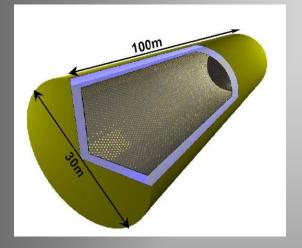

BSE: 28-38 events/per year

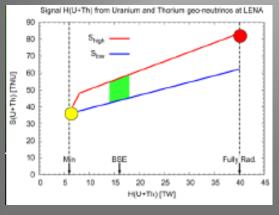
May 5th, 2010, Scuola Neutrini, Padova

Hanohano at Hawaii

Hawaii Antineutrino Observatory (HANOHANO = "magnificent" in Hawaiian

Mantovani, TAUP 2007


Project for a 10 kton liquid scintillator detector, movable and placed on a deep ocean floor J. G. Learned et al., XII International Workshop on Neutrino Telescopes, Venice, 2007.


Since Hawai placed on the U-Th depleted oceanic crust 70% of the signal from the mantle! Would lead to very interesting results! (Fiorentini et al.)

BSE: 60-100 events/per year

May 5th, 2010, Scuola Neutrini, Padova

LENA at Pyhasalmi, Finland

Mantovani, TAUP 2007

Project for a 50 kton underground liquid scintillator detector K.A. Hochmuth et al. – Astropart. Phys. 27, 2007.

80% of the signal from the continental crust (Fiorentini et al.)

BSE: 800-1200 events/per year

Scintillator loaded with 0.1% Gd:

- better neutron detection
- moderate directionality information

May 5th, 2010, Scuola Neutrini, Padova

Dubna JINR Kurchatov (Russia) Institute (Russia)

Heidelberg (Germany)

APC Paris

Princeton University WirginiaTech

Virginia Tech. University

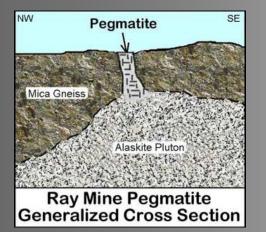
Jagiellonian U. Cracow (Poland)

Directionality of geoneutrinos

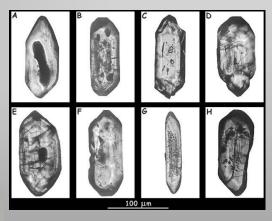
 Momentum conservation → neutron starts "moving forwards" angle (geoneutrino, neutron) < 26°

directionality degraded during the neutron thermalization

• even a minimal directional information would be sufficient for the source discrimination


•Reactor & crust antineutrinos → horizontal
•Mantle antineutrinos → vertical

Gd, Li and B loaded liquid scintillators with which directional measurement might be possible are under investigation by several groups


May 5th, 2010, Scuola Neutrini, Padova

Where is concentrated U and Th?

refractory lithophile elements - accumulation in the melt (pegmatites, monazite)

accessories minerals in igneous rocks (zircon)

Uraninit (oxides of U) + secondary minerals phosphates, lignit (brown coal)

Heavy grains: accumulation in sandstones;

U: can be dissolved in water!!!! Mobility!!!

May 5th, 2010, Scuola Neutrini, Padova

Geoneutrinos: antineutrinos from the Earth

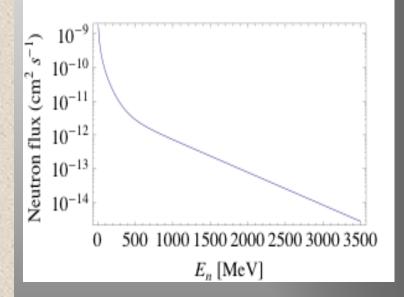
- The main long-lived radioactive elements within the Earth: ²³⁸U, ²³²Th, and ⁴⁰K
 - absolute BSE abundances varies within 10% based on the model;
 - ratios of BSE element abundances more stable in different calculations:
 - Th/U = 3.9
 - K/U = 1.14 x 10⁴
 - concentration for ²³⁸U (Mantovani *et al.* 2004)

upper continental crust:	2.5 ppm
middle continental crust:	1.6 ppm
lower continental crust:	0.63 <mark>ppm</mark>
oceanic crust:	0.1 ppm
upper mantle:	6.5 ppb
core	NOTHING

BSE (primordial mantle) 20 ppb

May 5th, 2010, Scuola Neutrini, Padova

Muon-induced neutrons from the rocks

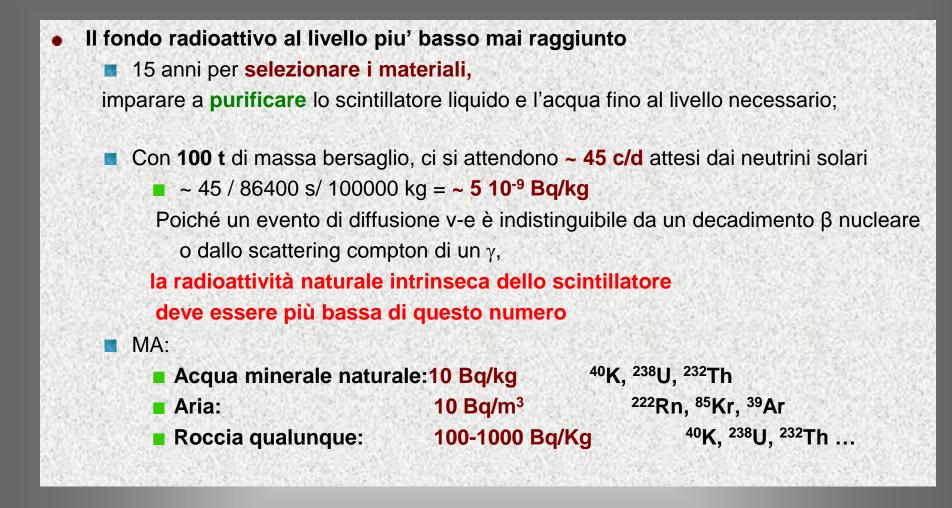

 $\Phi(E_n > 10 \text{ MeV}) = 7.3 \ 10^{-10} \text{ cm}^{-2}\text{s}^{-1}$

 $\langle E_n \rangle \sim 90 \text{ MeV}$

Borexino shielding: 2m of water 2.5m of PC buffer $\lambda_{PC}(100 \text{ MeV}) \cong 70 \text{ cm}$ $\lambda_{PC-ES}(100 \text{ MeV}) \cong 110 \text{ cm}$

Use neutron spectrum as input for MC simulation:

- a) 5 10⁶ events simulated
- b) simulated statistics corresponds to 23 years;
- c) 160 events inside Inner Vessel
- d) 1 fake anti-v found with 9000p.e.


<0.04 events/(100ton-year) 90% C.L.

We use the following likelihood:

$$L(N_{geo}, N_{reac}, S_{reac}, S_{FV}) = e^{-\int_{E_{min}}^{E_{max}} dE f_v(E; N_{geo}, N_{reac}, S_{reac}, S_{FV})} \times \prod_{i=1}^{N_{obs}} \left[f_v(E_i; N_{geo}, N_{reac}, S_{reac}, S_{FV}) + f_B(E_i) \right] \times e^{-\frac{1}{2} \left(\frac{S_{reac}}{\sigma_{reac}} \right)^2} \times e^{-\frac{1}{2} \left(\frac{S_{reac}}{\sigma_{FV}} \right)^2}$$

with

 f_v = spectrum of geo + reactor anti-neutrinos (assumes chondritic Th/U ratio) f_B = spectrum of backgrounds σ_{react} =0.0538 and σ_{FV} =0.038

Lo scintillatore di Borexino DEVE essere (e fortunatamente è) 9-10 ordini di grandezza MENO RADIOATTIVO di qualunque cosa sulla Terra

l problemi da affrontare

- ¹⁴C (β ~160 KeV): dentro il PC
 - Selezione scintillatore

³⁹Ar (β), ⁸⁵Kr(β-γ), ²²²Rn(α,β,γ) : aria

- Sviluppo di N₂ ultrapuro
- Tenuta alto vuoto ovunque

²³⁸U(α , β , γ), ²³²Th(α , β , γ), ²¹⁰Pb(α , β), ²¹⁰Po(α): ovunque

- Purificazioni, selezione materiali
- Sviluppo tecniche di lavaggio, risciaquo, asciugatura

y dalla roccia e dai materiali

- Schermature, Selezione materiali
- µ dai Raggi cosmici e cosmogenici
 - Laboratorio sotterraneo
 - Identificazione dei µ con il rivelatore