VIII International Workshop on "Neutrino Telescopes" Venice, February 24, 1999

A Combined Analysis of Atmospheric Neutrino Results

GLF

- 1. Introduction
- 2. Atmospheric v: 2v and 3v oscillations
- 3. Updating the SuperKamiokande data (45 kTy)
- 4. Neutrino decay and Superkamiokande data
- 5. Solar + Atmospheric v solutions
- 6. Established facts and open questions

Neutrino oscillation evidence

Two kinds of observables:

total neutrino event rates

crucial to assess oscillations unambiguously !!!

Present evidence

	total rate	spectra
LSND	$P(v_{\mu} \rightarrow v_{e}) > 0$ (controversial)	no significant info
solar	P(v _e →v _e) < 1 (robust)	$\frac{\partial P_{ee}}{\partial E} \neq 0 \text{ preferred}$ no indication for $\frac{\partial P_{ee}}{\partial t} \neq 0 \text{ , } \frac{\partial P_{ee}}{\partial L} \neq 0$
atmospheric	$P(v_{\mu} \rightarrow v_{\mu}) < 1$ (ambiguous)	$\frac{\partial P_{\mu\mu}}{\partial L} \neq 0$ (robust)

2. Atmospheric neutrinos: 2v and 3v analysis of the SK data

Experimental data

Total rates and zenithal distributions

GLF, E. Lisi, A. Marrone and G. Scioscia, Physical Review D 59, 033001 (1999)

Atmospheric neutrinos: pre-SK data (total rates)

Separate analysis of μ -like and e-like events in the (μ/μ_{BGS} , e/e_{BGS}) plane

•

normalized to the <u>BGS flux</u> (Barr, Gaisser & Stanev) correlation effects taken into account

GLF and E. Lisi, Phys. Rev. D52 (1995) 2775

Atmospheric neutrinos: SK total rates

SuperKamiokande total lepton rates, as presented @ v '98 (33.0 kTy, preliminary)

Comparison of SubGeV (SG), MultiGeV (MG) and Upgoing μ (Up- μ) with the SuperKamiokande MonteCarlo

HKKM '95 v fluxes with

 $\begin{array}{c} \textbf{30\%} \ \mu-e \ normalization \ error \\ \textbf{5\%} \ \mu/e \ ratio \ error \end{array}$

Total rate ambiguity

Effect of a 20% shift of the v fluxes

We expect less ambiguous information from spectral distorsions

SuperKamiokande data @ v '98

1998 particle physics hit: up/down asymmetry in SK !

Comments

• Clear evidence in favor of
$$\frac{\partial P(\nu_{\mu} \rightarrow \nu_{\mu})}{\partial L} \neq 0$$

- Evidence is <u>robust</u> since MultiGev leptons are relatively good "tracers" of the energy and direction of parent neutrinos
- **Geomagnetic effects small for MultiGev events**

SuperKamiokande data @ v '98

Evidence is weaker, but consistent with MultiGeV

Atmospheric v: new MACRO data @ v '98

Atmospheric v: new SOUDAN2 data @ v '98

anomaly confirmed, but no significant evidence for UP/DOWN asymmetry

Zenith Angles

MC normalized to 3.89 kty data. Flux is Barr, Gaisser, Stanev.

ICHEP 98

Superkamiokande zenithal distributions

(normalized to NO OSCILLATION in each bin)

electrons: no significant deviation from a flat shape (slight excess of upgoing SGe)

muons: significant distorsion, in particular MG_µ

analyzed in the following in a three-flavour approach

Parametrization

with

parameter space in the "one-dominant mass scale approximation", by assuming the mass spectrum

$$\begin{bmatrix} v_{3} \\ v_{1} \\ v_{2} \end{bmatrix} = U(\theta_{ij}, \delta_{CP}) \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix} = U(\theta_{ij}, \delta_{CP}) \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix} = m_{2}^{2} - m_{1}^{2} \begin{bmatrix} \omega = \theta_{12} \\ \phi = \theta_{13} \\ \psi = \theta_{23} \end{bmatrix}$$

Up to terms of order $(\delta m^2/m^2)$, the parameter space is spanned by three variables only

$$(\mathbf{m}^{2}, \psi, \phi) \iff (\mathbf{m}^{2}, U_{e3}^{2}, U_{\mu3}^{2}, U_{\tau3}^{2}) \qquad \text{with} \qquad U_{e3}^{2} + U_{\mu3}^{2} + U_{\tau3}^{2} = 1$$

or equivalently (unitarity)

What is relevant is the flavour composition of v_3 :

$$v_{3} = U_{e3} v_{e} + U_{\mu 3} v_{\mu} + U_{\tau 3} v_{\tau}$$

$$U_{e3}^{2} = S_{\phi}^{2}$$

$$U_{\mu 3}^{2} = C_{\phi}^{2} S_{\psi}^{2}$$

$$U_{\tau 3}^{2} = C_{\phi}^{2} C_{\psi}^{2}$$

$$V_{\tau}$$

$$V_{\mu}$$

the unitarity being automatically enforced by means of a "triangular representation" for m^2 fixed

V

Comparing expectations with the experimental SK zenithal distributions for specific choices of $(m^2, U_{e3}^2, U_{\mu3}^2, U_{\tau3}^2)$

Examples of $v_{\mu} \Leftrightarrow v_{\tau}$ distorted distributions:

- no distorsion of e-like events (but some excess)
- just the right distortion for μ-like events

$$\label{eq:v_matrix} \begin{split} & \Downarrow \\ \nu_{\mu} \rightarrow \nu_{\tau} \hspace{0.2cm} \text{good fit} \end{split}$$

Comparing expectations with the experimental SK zenithal distributions for specific choices of $(m^2, U_{e3}^2, U_{\mu3}^2, U_{\tau3}^2)$

Examples of $v_{\mu} \Leftrightarrow v_{e}$ distorted distributions:

- too strong distorsion of e-like events
- too weak distortion of µ-like events

Two-flavor analysis of the SK v'98 data

SubGeV, MultiGeV and Upgoing μ combined GLF, Lisi, Marrone & Scioscia hep-ph/9808205

Comparing expectations with the experimental SK zenithal distributions for specific choices of $(m^2, U_{e3}^2, U_{\mu3}^2, U_{\tau3}^2)$

Examples of 3v distorted distributions

 \downarrow

3v mixing "helps" to explain part of the electron excess without perturbing too much the muon distribution

Allowed regions in a three-flavour approach

Allowed regions in a three-flavour approach

Combining Superkamiokande and CHOOZ

Bounds on m² for unconstrained 3v mixing

in good agreement with the analysis of the old atmospheric data ...

Atmospheric neutrinos: fit to m²

IMB + Frejus + NUSEX + Kamiokande (SubGeV + MultiGeV)

Our pre-SK fit already indicated $m^2 \sim 5 \times 10^{-3} \text{ eV}^2$! GLF, Lisi, Montanino and Scioscia, PRD 55 (1997) 4358

cosv

cos v

cosv

cosv

Three-flavor best-fit to the SK v'98 data

 $\chi^{2} = 28.4$

Three-flavor best-fit to the SK v'98 data

Comparing SK+CHOOZ with K2K and MINOS

3. Updating the SK data (45 kTy, January '99)

The new experimental dataA three-flavor analysis

GLF, E. Lisi, A. Marrone and G. Scioscia, preliminary

Update of the SK data: SG and MG zenithal distributions

$\nu_{\mu}^{} ~ \nu_{\tau}^{}$ Best Fit Zenith Angle Rates

Allowed regions in a three-flavour approach

VERY PRELIMINARY!

Allowed regions in a three-flavour approach

Combining Superkamiokande and CHOOZ

VERY PRELIMINARY!

Bounds on m² for unconstrained 3v mixing

best-fit for both cases @ $m^2 = 2.8 \times 10^{-3} eV^2$

VERY PRELIMINARY!

With respect to the 33 kTy data:

log(m²) range reduced of ~ 15%

Further improvements in statistics might be increasingly hindered by the systematics uncertainties in fluxes and cross-sections

Best-fit distributions

The slight up-down asymmetry in the MGe distribution is due to $U_{e3}^2 \neq 0$. Much higher statistics needed to check it.

VERY PRELIMINARY!

SK99_5

Comparing SK+CHOOZ with K2K and MINOS

VERY PRELIMINARY!

comparing SK data with 2v and 3v maximal mixing

Without including the CHOOZ constraints,

 $\chi^2(3\nu) < \chi^2(2\nu)$

for relatively high values of m^2 . Not a great variation in MG μ , but SG μ and Up μ are fitted better with 3 ν oscillations

neutrino decay interpretation of the atmospheric neutrino anomaly

 ν_{μ} assumed to have un instable component ν_{d} with mass m_{d} and lifetime τ_{d}

parameters

$$\cos \xi \equiv < v_{\mu} | v_{d} >$$
$$\alpha = m_{d} / \tau_{d}$$

neutrino decay interpretation of the atmospheric neutrino anomaly

GLF, E. Lisi, A. Marrone and G. Scioscia hep-ph/9902267

 $----- neutrino decay: \chi^{2} = 86.2 (N_{df} = 28)$ $----- neutrino oscillation: \chi^{2} = 20.7 (N_{df} = 28)$

5. Solar + atmospheric v solutions

Within the scheme discussed before:

 U_{e3}^2 must be the <u>SAME</u> in both triangles !!!

Example of models Solar Atm. + CHOOZ ν_{e} ν_{3} 1 "bimaximal mixing" allowed ν_2 ν_{μ} ν_1 v_{τ} ν_{e} v_3 2. "threefold disfavored maximal" mixing

 v_2

 ν_{τ}

 $\tilde{v_1}$

 ν_{μ}

6. Established facts and open questions

- angular distribution information is robust: it drives the fit, narrowing the m² range and excluding scenarios different from "standard" oscillations (see also the Pakvasa 's talk and Lipari-Lusignoli, hep-ph/9901350)
- **good fit provided by dominant** $v_{\mu} \rightarrow v_{\tau}$ with a "bit" of v_{e}

however ...

- e-like distributions have (at present) a too low statistics to probe the <u>distorsions</u> induced by the v_e mixing
- Total rate information is <u>ambiguous</u>: it is not inconsistent with $v_{\mu} \Leftrightarrow v_{e}$, MC × 1.1 is required by $v_{\mu} \Leftrightarrow v_{\tau}$ interpretation, but MC × 0.8 would jeopardize the oscillation interpretation!

NEED TO IMPROVE AND CONSTRAIN THEORETICAL CALCULATION OF FLUXES

 $\implies \text{NEED TO TEST THE ROLE OF } v_e \text{ MIXING WITH HIGHER} \\ \underline{\text{STATISTICS}}$

LBL experiments

ν_τ appearance is the main goal, but not the only one: LBL expts. are our only chance to measure some oscillation parameters !

 \implies m², U²_{e3}, U²_{µ3}, U²_{τ3}

- ve appearance is also important!
- ⇒ LBL PROPOSALS SHOULD PROVE HOW WELL THEY CAN MEASURE OSCILLATION PARAMETERS, RATHER THAN JUST CONFIRM THE SK DISAPPEARANCE SIGNAL