

Neutrino oscillations at accelerators

Mauro Mezzetto, Istituto Nazionale di Fisica Nucleare, Padova.

LSND experiment at the Los Alamos Meson Physics Facility (LAMPF)

Neutrino Source High intensity (1mA) low energy (800 MeV) p beam into stop target

Look for $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillation from decay at rest (DAR) neutrino flux and for $\nu_{\mu} \rightarrow \nu_{e}$ oscillation from decay in flight (DIF) neutrino flux.

- $\overline{\nu}_e$ flux is $\overline{\nu}_e$ / $\overline{\nu}_\mu$ (DAR) = $7.8 \cdot 10^{-4}$
- Oscillated $\overline{\nu}_e$ events have a maximum energy of 52.8 MeV.
- No electron from ν_e above 36 MeV $(\nu_e^{12}C \rightarrow e^{-\ 12}N)$
- No electron with a correlated γ above 20 MeV ($\nu_e^{12}C \rightarrow e^- n^{11}N$)

N

LSND Experimental Layout

Liquid Scintillator Neutrino Detector

167t of Dilute Mineral Oil

Cerenkov light (n=1.47): threshold+direction Scintillation: energy Cerenkov/scintillation: particle identification central detector: 1220x8" PMT (25% surface coverage) mineral oil (CH2) doped with 0.031 g/l of b-PBD.

veto detector: 292x8" PMT, passive shield: ~2 Kg/cm2

DATA TAKING

YEAR	COULOMBS	
1993	1787	
1994	5904	First DAR paper: "Candidate events" (PRL 75(1995)2650)
1995	7081	Second DAR paper: "Evidence for", (Ph.Rev.C 54(1996)2685 and PRL 77(1996)3082 "
		DIF paper: "Results on", (PRL 81(1998)1774 and Ph.Rev.C 58(1998)2489)
1996	3790	Water tank removed from the target region.
1997	7181	Preliminary results at Neutrino 1998
1998	$\simeq 3000$	End of data taking 21 dec 1998

 ν_e detected and flux measured by $\nu_e \ ^{12}C \rightarrow ^{12}N_{gs}e^-$

 $\overline{\nu}_{\mu}$ flux known at 7% through the results of a subsidiary experiment.

S

DAR OSCILLATION SEARCH

prompt positron signal, energy range. $\overline{\nu_e}\,p
ightarrow e^+ n$

 $\begin{array}{c} n+p \xrightarrow[\tau \simeq 186 \ \mu s]{} d+\gamma(2.2 \ MeV) \\ \text{delayed correlated photon.} \end{array}$

- 1. Particle identification through position, direction, #PMT (e^- calibration through Michel e^- from CR μ decays)
- 2. CR veto through veto on detector activity before and after the trigger.
- 3. Correlated γ through likelihood function ${\cal R}$ (built with CR muons and/or MC)
- 4. Energy range: $20 \le E_e \le 60$ or $36 \le E_e \le 60 MeV$ (golden sample).

Overall $\overline{\nu}_e$ detection efficiency: 22%

ດ

BACKGROUNDS

- 1. Cosmic Rays. Measured in beam off data (beam-off/beam-on $\simeq 13$, \rightarrow good statistical accuracy for background subtraction).
- 2. Beam interactions with a random γ (measured)
- 3. Genuine $\overline{\nu}_e$ and $\overline{\nu}_{\mu}$ with a correlated γ . Studied via MC simulations.

Expected backgrounds for the 1993-1995 period $36 < E_e < 60 \; {\rm MeV}$

Background	Neutrino Source	Events with $R \ge 0$	Events with $R > 30$
Beam Off		160.5 ± 3.4	2.52 ± 0.42
Beam-Related Neutrons		< 0.7	< 0.1
$ar{ u}_e p ightarrow e^+ n$	$\mu^- \to e^- \nu_\mu \bar{\nu}_e \text{ DAR}$	4.8 ± 1.0	1.10 ± 0.22
$ar{ u} \hspace{0.1 cm} p ightarrow \mu^{+} n$	$\pi^- \to \mu^- \bar{\nu}_\mu$ DIF	2.7 ± 1.3	0.62 ± 0.31
$ar{ u}_e p ightarrow e^+ n$	$\pi ightarrow e u$ and $\mu ightarrow e u ar{ u}$ DIF	0.1 ± 0.1	0
Total with Neutrons		7.6 ± 1.8	1.72 ± 0.41
$ u_{\mu} \mathrm{C} \to \mu^{-} X $	$\pi^+ \to \mu^+ \nu_\mu$ DIF	8.1 ± 4.0	0.05 ± 0.02
$ u_e \ ^{12}C ightarrow e^{- \ 12} N$	$\mu^+ ightarrow e^+ \bar{ u}_\mu u_e \; { m DAR}$	20.1 ± 4.0	0.12 ± 0.02
$ u_e ~^{13}C ightarrow e^- ~^{13}N$	$\mu^+ \to e^+ \bar{\nu}_\mu \nu_e \; { m DAR}$	22.5 ± 4.5	0.14 ± 0.03
u e ightarrow u e	$\mu^+ \to e^+ \bar{\nu}_\mu \nu_e ~{ m DAR}$	12.0 ± 1.2	0.07 ± 0.01
u e ightarrow u e	$\pi o \mu u_{\mu} ext{ DIF}$	1.5 ± 0.3	0.01 ± 0.01
$\nu_e \mathrm{C} \to e^- X$	$\pi ightarrow e u_e \; { m DAR}$	3.6 ± 0.7	0.02 ± 0.01
$ u_{\mu}\mathrm{C} ightarrow \pi X$	$\pi ightarrow \mu u_{\mu} ext{ DIF}$	0.2 ± 0.1	0
$\nu_e \mathrm{C} \to e^- X$	$\pi ightarrow e u$ and $\mu ightarrow e u ar{ u}$ DIF	0.6 ± 0.1	0
Total without Neutrons		68.6 ± 9.5	0.41 ± 0.06
Grand Total		236.7 ± 10.2	4.65 ± 0.59
100% Transmutation	$\mu^+ \to e^+ \bar{\nu}_\mu \nu_e \text{ DAR}$	12500 ± 1250	2875 ± 345

Events with $20 \leq E_e \leq 60 \ MeV$, R > 30:

Year	Coulomb	Beam ON	Beam Off	u bgd	Excess	Oscill. Prob.(%)
93-95	14772	38	9.2 ± 0.8	7.7 ± 0.8	21.1 ± 6.3	$0.31 \pm 0.12 \pm 0.05$
96-98	13971	32	8.5 ± 0.6	5.1 ± 0.6	18.4 ± 6.1	$0.32 \pm 0.15 \pm 0.05$
Total	28743	70	17.7 ± 1.0	12.8 ± 1.7	39.5 ± 8.8	$0.31 \pm 0.09 \pm 0.05$

ω

While don't fit backgrounds:

- Fit the excess with the $\mu^$ background: it must be multiplied by 8.6 and χ^2 is 2.2 units worse than oscillation fit
- π⁻ DIF backgrounds studied with a special trigger during 1995, in order to increase sensitivity to muons associated to small activity: it resulted compatible with the MC predictions.

SIGNAL PLOT

• Built with all the events with $20 \leq E_e \leq 60 \; MeV$

(1763 events in 1993-95), using the energy, the likelihood R, the angle respect the beam direction ($\cos \theta_b$) and the path length L

- Systematics included: neutrino flux \times detection efficiency = 10%.
- Bidimensional $(sin^2(2\theta), \Delta m^2)$ grid, selecting $\Delta \chi^2 = 2.6(90\%)$ and 4.5(99%)above the minimum.
- The other exclusion curves in the plot are built with several different statistical methods!.

$u_{\mu} ightarrow u_{e}$ DIF analysis

- Inclusive reaction $\nu_e C \rightarrow e^- X$
- No correlated γ : single signature.
- No ν_e from μ DIF \rightarrow selection based on electron
- energy: $60 < E_e < 200$ MeV.
- Longer tracks \rightarrow Č/scintillation light more favoral
 - \rightarrow better particle identification.

About the presumed discrepancy between 1993-1995 and 1996-1998 data

In 1996-1998 the data was collected without the 30 cm long water target upstream of the beam dump. The neutrino flux in 1996-1998 compared to 1993-1995 was only 2/3 for DAR and 1/2 for DIF.

The reason for the change in beam-stop configuration is that the accelerator funding changed from nuclear physics to testing tritium production.

KARMEN EXPERIMENT

Performed at ISIS neutron spallation facility at RAL.

The detector (56 t), is at 17 m, 90° , from the beam stop. Beam current is 0.2 mA.

The time structure of the beam permits a separation between neutrinos from μ^+ DAR and those from π decay (both DAR and DIF).

KARMEN 1: 1990-1995, 9120 Coulombs. Seen 171 events, expected 140 from cosmic rays and beam backgrounds.

Beam excess = 31 ± 17 (2.4 σ), delayed event seen but prompt positron do not exhibit time and energy distribution from oscillations. A lower limit on oscillation probability: $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) < 4.25 \cdot 10^{-3} (90\% CL)$ was set.

Also performed a search for $\nu_{\mu} \rightarrow \nu_{e}$ oscillation, with a $90\% \ CL$ limit of $2 \cdot 10^{-2}$ on the probability.

UPGRADE (KARMEN 2): new 300 m^2 active veto layer surrounding the iron blockhouse (4 λ)

- throughgoing or stopping muons can be off-line vetoed
- Cosmic background suppression reduced by a factor 43.

17.05.98

14

Karmen data analysis

Window Analysis (similar to Karmen 1): event selection through simple cuts and no likelihoods:

Visible Energy: 20-50 MeV.

Prompt Event time: 0.6-8.6 μs after beam

no activity in any of 3 veto sys.

 Δt cuts on previous detector activity.

Visible energy: 0-5.5 MeV

Sequential Event time difference: 5-270 μs

positron correlation: $\Delta x < 60 \ cr$

The cuts are optimized for low Δm^2 ($0.1 - 1 \ eV^2$).

Likelihood Analysis (a la LSND): relax the cuts and build likelihood functions for prompt and delayed ever selection (VERY PRELIMINARY).

BACKGROUNDS

(normalized to Feb 97-Nov 98, window analysis)

Cosmics (meas.)	0.90 ± 0.08
sequential $ u_e C^{12}$ (meas.)	1.28 ± 0.20
random $ u_e C^{12}$ (meas.)	0.95 ± 0.10
intrinsic $\overline{ u}_e$ contamination (MC)	0.65 ± 0.07
Total	3.79 ± 0.30

Karmen2 Data Progression

DATA	Coulombs	Expected	Events	N^*	$sin^2(2\theta)$	Sensitivity*
TAKING		Backgrounds		(full mixing)	($\Delta m^2 ightarrow \infty$)	
Feb.97-Apr.98	2897	2.88	0	811	$1.3 \cdot 10^{-3}$	$5.4\cdot10^{-3}$
Feb.97-Jun.98	3268	3.25	1	950	$1.8\cdot 10^{-3}$	$4.5\cdot 10^{-3}$
Feb.97-Nov.98	3731	3.79 ± 0.30	3	1058 ± 107	$3.5\cdot 10^{-3}$	$4.2\cdot 10^{-3}$
Feb.97-Nov.98	3731	9.30 ± 0.74	7	1384 ± 152	$1.9\cdot 10^{-3}$	$2.3\cdot 10^{-3}$
(likelihood)						

* Sensitivity is defined as the average limit for an experiment that doesn't see any signal and detects the expected background.

Latest results no longer show a large disagreement between background prediction and events seen: the physic result no longer depends on from the statistical method adopted.

The 1998 ISIS cycle finished on February, 16th 1999, corresponding to 2 years of Karmen 2. Results are expect in a month or two.

The experiment will run for a further two years, reaching a sensitivity on $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \simeq 1.3 \cdot 10^{-3}$.

Karmen2 preliminary exclusion plots

- A purely illustrative exercise to compare 90% CL exclusion plots (Karmen) built with the Cousins-Feldman method, with the LSND preferred signal regions.
- Karmen results must be considered very preliminary and a final analysis for the Feb.97-Feb.99 period is expected next month.
- Also LSND results are preliminary and again the final, complete, data analysis is expected in a month or two.
- Karmen final sensitivity is calculated for 4 years of data taking. A negative result will be not conclusive.

1

LSND vs. KARMEN

	LSND	KARMEN				
Accelerator	LAMPF	ISIS				
Proton Energy	800 MeV	800 MeV				
Proton Current	1 mA	0.2 mA				
Duty factor	$6\cdot 10^{-2}$	$5\cdot 10^{-4}$				
Angle from proton beam axis	17^0	90 ⁰				
Distance from target	30 m	17.5 m				
Timing separation μ/π	No	Yes				
Detector mass	167 tons	56 tons				
Detection	Scint + $\hat{C}erenkov$	Scint.				
Event location	timing	segmentation				
Energy resolution	$\frac{43\%}{\sqrt{E\left(MeV\right)}}$	$\frac{11\%}{\sqrt{E\left(MeV\right)}}$				
Particle id.	Yes	No				
Neutron capture	proton (2.2 $MeV\gamma$)	Gd (8 $MeV~\gamma$)				
Integrated charge	$\sim 28700~C$	9211+3731				
Relative Detection Event Rate ($\overline{\nu}_e + p \rightarrow e^+ + n$)						
$\operatorname{High}\Delta m^2 (> 10eV^2)$	1.0	0.24				
Small $\Delta m^2 (< 1 eV^2)$	1.0	0.08				

$u_{\mu} \rightarrow \nu_{\tau}$ search at the CERN Wide Band Beam

In the mass scale above $1 \ eV$, inspired by Dark Matter scale

The first dedicated exploration of the $u_{\mu} \leftrightarrow
u_{\tau}$ oscillation parameter space

CERN Wide Band Beam (WANF)

Distance of detector from target $\sim 800m$. Effective neutrino flight path $\sim 600m$.

Flavour	Rel. Flux	$\langle E_{\nu} \rangle \; (GeV)$
$ u_{\mu}$	1	23.5
$\overline{ u}_{\mu}$	0.061	19.2
$ u_e$	0.0094	37.1
$\overline{ u}_e$	0.0024	31.3

 u_{τ} flux is negligible (less than 0.1 expected interactions in 4 years).

20

norus detector

Chorus target and target tracker

Fibre tracker: $\sim 10^6$ scintillating fibers of $500 \ \mu m$ in diameter. Resolutions: 2 mrad and 150 μm .

Emulsion Target: $(4 \times 200 \ Kg)$ Spatial resolution $\sim 1\mu m$, grain density $\sim 300/mm$. Ideal to detect the τ decay kink.

Chorus scanning

Scanning speed is dramatically increased:

year

year

1994

0.5

1995

1998

1800

Automatic scanning: Track Selector (Nagoya)

Chorus signal definition

One Muon Channel (the golden one)

Negative μ track, $p < 30 \ GeV$ No other primary lepton Kink on muon track $p_{\top} > 250 \ MeV$ Short flight length < 5 plates (4mm)

Background

Charm production by antineutrinos (very small)

To check scan	ning efficie	ncy: Use	even
with 2 muons in	n the final	state (\sim	2%
the total) scan	the emulsio	n searching	for
kink $ ightarrow$ charm c	limuon cand	idates (D^+	decay
	1995	1996	
Expected events	7.4 ± 0.7	15.4 ± 2.2	
Events found	8	17	

Zero μ channel (Sensitive to $\tau \rightarrow \nu_{\tau} h^{-}(nh^{0})$, $\tau \rightarrow \nu_{\tau} \overline{\nu}_{e} e^{-}, \tau \rightarrow \nu_{\tau} \overline{\nu}_{\mu} \mu^{-}$ where the μ^{-} is not identified) Negative non-muon track 1No primary leptonKink on negative trackStrict flight length cut < 3 planes

Background

Charm production by antineutrinos (very small) NC events with a kink-like pion (0.5 events with the present statistic)

24

Final result

Pot/100.811.201.381.675.06CHORUS efficiency0.770.880.940.940.90Emulsion triggers/104225476177192305
CHORUS efficiency 0.77 0.88 0.94 0.94 0.90 Emulsion triggers/ 10^3 4225476177192305
Emulsion triggers/10 ³ 422 547 617 719 2305
Expected CC(ν_{μ})/10 ³ 120 200 230 290 840
1μ to be scanned 66,911 110,916 129,669 151,105 458,601
1μ scanned so far 69% 47% 59% 48% 54%
1μ vertex located 193581 215809 30,681 30,790 102,861
0μ to be scanned 17 731 279841 32,548 37,929 116,049
0μ scanned so far 60% 48% 53% 33% 47%
0μ vertex located 35491 45023 5,339 3,837 16,690

1996 and 1997 0μ not yet included in the analysis.

	1μ	$0\mu(h)$	$0\mu(e^-)$	$0\mu(\mu)$
$A(\tau)/A(\nu_{\mu}^{CC})$	1.07	0.47	0.26	0.073
B.R.	0.174	0.495	0.178	0.174
ϵ	0.35-0.52	0.26	0.13	0.25
$N^*_{ u_{ au}}$	4003	998	100	51

A: acceptance and reconstruction efficiency, **B.R.**: branching ratio, ϵ : kink finding efficiency, $N^*_{\nu_{\tau}}$: expected ν_{τ} interactions at full mixing

$$\downarrow P(\nu_{\mu} \to \nu_{\tau}) \le \frac{2.38}{N_{\nu_{\tau}}^*} = 4.6 \cdot 10^{-4} \quad (90\% CL)$$
(2.28 takes into account 17% evotematic upportainty)

(2.38 takes into account 17% systematic uncertainty.)

NOMAD Detector

(NIM A404(1998)96)

- Drift Chambers (target and momentum measurement) Spatial resolution $< 200 \ \mu m$ (small angle tracks) Momentum resolution $\sim 3.5\% \ (p < 10 \ GeV/c)$
- Transition Radiation Detector (TRD) for e^{\pm} identification π rejection $\simeq 10^3$ $\varepsilon(e) \ge 90\%$ for isolated tracks
- Lead Glass Electromagnetic Calorimeter

$$\frac{\sigma(E)}{E} = 1.0\% + \frac{3.2\%}{\sqrt{E(GeV)}}$$

Muon Chambers

arepsilon~pprox 97% for $p_{\mu}~>$ 5 GeV/c

Nomad hasn't a univocal signature, but has several clues of τ signals

... better if you correlate them

Extensive use of 3D likelihoods to separate signal from backgrounds

Data Simulator

- A background rejection of the order of 10^5 is required to extract the signal
- The final selection is based on "delicate" variables in the transverse plane

Monte Carlo is not enough for efficiency calculations and background predictions. \Rightarrow Data itself must be used to correct MC predictions.

Data Simulator compares a MC sample (MCS) and a Data sample (DS) of u_{μ}^{CC}

- Replace the identified μ in MC and Data by a MC lepton:
 - (a) $\mu \rightarrow \nu$ yields a "Fake NC"
 - (b) $\mu \rightarrow e$ yields a "Fake ν_e^{CC} "
 - (c) $\mu \rightarrow \tau$ yields a "Fake ν_{τ}^{CC} "
- Compute efficiency for signal and background as $\epsilon = \epsilon_{MC} \frac{\epsilon_{DS}}{\epsilon_{MCS}}$

Avoiding Biases & Cross-Checking Analysis

Various independent analysis' per channel

Search for τ^+ **candidates:** No τ^+ signal is expected \rightarrow Search for τ^+ in the data and demonstrate that background predictions agree with data.

Blind Analysis To avoid ANY bias in selecting the events, define a "signal" region and never look at the data there. Robust prediction of backgrounds must be demonstrated before analysis is authorized to "open the box". The choice of the best analysis in each decay channel is made looking for the best sensitivity, before opening the box

28

As an example: $\tau \rightarrow e^- \nu_\tau \overline{\nu}_e$ deep inelastic (DIS) search.

- Only one primary electron
- Tight electron identification based on TRD, preshower, ECAL.
- invariant mass cut on combination with any positive track to avoid conversions
 - π^- rejection: $\mathcal{O}(10^6)$
 - π^0 rejection: $\mathcal{O}(10^5)$

electron id. efficiency: 19%

- Likelihood against NC
- Likelihood against u_e^{CC}
- Signal box defined in the bidimensional space defined by the two likelihoods and subdivided in 5 subboxes.

Likelihood values for ν_e^{CC} rejection, after all the other cuts. Background expectation, after the data simulator correction, and data agree remarkably well.

To make optimal use of kinematical rejection, signal regions are further divided in sub-boxes

au ightarrow e DIS, 1995-1997				$\tau \rightarrow hadrons \mathrm{D}$	IS, 199	5-1997		
Box	Background	Data	$N_{ au}^{ m max}$	Decay Channel	Box	Background	Data	$N_{ au}^{\max}$
1	1.19 ± 0.39	0	212	$\tau \to h(n\pi^0)$	I.	2.7 ± 0.9	3	564
Ш	0.42 ± 0.27	1	258		Ш	0.5 ± 0.5	2	200
III	3.01 ± 0.67	4	620		Ш	1.8 ± 0.7	0	963
IV	1.45 ± 0.50	0	535	$\tau \to \rho$	_	$5.0^{+1.7}_{-0.9}$	5	1891
V	0.28 ± 0.24	0	1193	$\tau \to 3\pi(\pi^0)$	_	6.5 ± 1.1	5	1180

Final numbers, in 1995-97: 950000 u_{μ}^{CC} in the target

			$ au^-$		$ au^+$			
Analysis	Year	Obs.	Est. Bkgnd	Obs.	Est. Bkgnd	$\epsilon(\%)$	Br(%)	N_{τ}^{\max}
$\tau \to e \text{ DIS}$	95-97	5	$6.3^{+1.6}_{-1.0}$	7	7.4 ± 3.1	3.5	17.8	2818
$ au o h(n\pi^0)$ DIS	95-97	5	5.0 ± 1.2	14	9.9 ± 2.3	0.78	49.8	1727
$\tau \to \rho \mathrm{DIS}$	95-97	5	$5.0^{+1.7}_{-0.9}$	13	$10.2^{+1.4}_{-1.1}$	1.6	25.3	1891
$ au ightarrow 3\pi(\pi^0)$ DIS	95-96	5	6.5 ± 1.1	14	13.5 ± 1.4	2.9	15.2	1180
$\tau \to e \ \mathrm{LM}$	95	0	$0.5 {}^{+ 0.6}_{- 0.2}$	1	1.1 ± 0.7	3.4	17.8	218
$ au ightarrow \pi(\pi^0) { m LM}$	95	1	$0.1 {}^{+ 0.3}_{- 0.1}$	6	8.8 ± 3.5	1.5	37.3	198
$ au ightarrow 3\pi(\pi^0)$ LM	95	0	$0.4 {}^{+ 0.6}_{- 0.4}$	14	11 ± 4	2.0	15.2	108

LM: Low multiplicity analysis, specialized in quasi elastic like events

- Nomad systematic errors: 10% on τ efficiency, 20% on background estimation.
- Nomad plot built with the Cousins-Feldman method

Outlook

Still to be scanned:

- ullet $\sim 50\%$ of 1μ events
- $\sim 80\%$ of 0μ events

Next step: rescan everithing with the phase II scanning:

- Optimization of reconstruction algorithms
- Increase in automatic scanning speed \rightarrow better kink finding algorithms
- Better knowledge of the white kink background (through the measure of pion tracks along the emulsions) relevant in the 0μ events.

$$\Downarrow$$
 If no candidate: $P(\nu_n
ightarrow \nu_{ au}) \le 10^{-4}.$

- $\nu_{\mu} \rightarrow \nu_{\tau}$: 30% of DIS and 85% of LM channels still to be analized: expect a gain in sensitivity of $\sim 1.5 \div 2$.
- $\nu_{\mu} \rightarrow \nu_{e}$: with $10^{6} \nu_{\mu}^{CC}$, 15000 ν_{e}^{CC} and a systematic error below 10% (still to be finalized) \rightarrow sensitivity: $sin^{2}(2\theta) \sim 2 \cdot 10^{-3} (\Delta m^{2} > 10 eV^{2})$

• Non oscillation neutrino physics: mostly unexplored.

