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THE DISCOVERY

GRBs were discovered e
accidentally byKlebesadal = M7= ;
Strong and Olsonin 1967 _:;f.i'_.f- -_,a;g;;_:_;,;-,:;;__
using the Vela satellites = t——
(defense satellites sent to
monitor the outer space
treaty). The discovery

was reported
firstonly in 1973. &

Short bursts
7  0.1-100 sec
1 100keV- few MeV

1 Nonthermal spectrum.

No counterparts in any other part of the
spectrum Until 28 Feb 1997).
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Outline

GRBs

The Fireball Model and Predictions
Observations

The “standard model”

Comparison with Observations
More Observations

More Predictions

Even More Observations

Then | will run out of time
Conclusions




BATSE -
The First Revolution
Cosmological GRBs

= BATSE on .
Compton - GRO
(Fishman et. al)
GRBs are
distributed
Isotropically:

= With emission of 10°2 ergs (or
more) in a few seconds GRBs are
the (electromagnetically) most
luminous objects in the Universe.




THE COMPACTNESS
PROBLEM

VW —» €€

= Variability Scale: 0T < .1 sec
- R<cdT =3 16 cm

= Spectrum:
1 E O1Cergs,

' many photons |8
above 500 keV.

1 1, = norR 210"
(Probability for a photon to
escape is exp[T,])

1 No Photons above 500keV!




The Solution

Relativistic Motion
0 R<cy?0T
0 By, (0bs) =y E,p, (emitted)

T, = y**0no; R = 10/
y =100 (« [02)

(Goodman, Paczynski, Krolik & Pler,
Piran & Shemi)

The Fireball Model




The Fireball Model

particles
>100GeV

<

compact source Shocks
~ 107 cm Internal or External?

Goodman; Paczynskis Shemi &Piran,
Narayan, Paczynski & Piran; Meszaroes &
Rees,




Time scales In
Relativistic Fieballs

Tangua=To-Ta= RICy?: The angular
time Scale.

Toaga = Tc-TA=R/cy?: The radial
time scale.

AT = T.-T ,=A/c: The width of the shell.

T oo The cooling time scale
Generally but not during afterglow
Tcool <<T T AT

radial * * angular °




Internal Shocks
A=cT

) >

0 =cOT
® )T=R/cy’? =6/c< A/c=T

Internal shocks can convert
only a fraction of the kinetic
energy to radiation\{ochkovich
et. al., Kobayashi, Piran & Sjuvi

It should be followed b
additional emission.




The Internal-External
Scenario

GRB is

produced Begins
here asy-rays
\» or X-rays
Optical sl .
or UV, continues
decays as the late

Source
/ quickly afterglow

\’ j ISM
Internal Shocks \

Forward shock

External Shoc Reverse Shock




AFTERGLOW
PREDICTIONS

0 Paczynski and Rhoads 1994
0 Katz 1994

1 Meszaros and Re€el997

0 Vietri 1997

The GRB and the afterglow are
produced by different
phenomenon

0 Sar and Piran 1997




The Second Revolution:
GRB Afterglow

s [ he Italilan/Dutch
satellite Beppo/SAX

discovered GRB x-ray
afterglow on

28 February 1997 Costa et. al).
The exact position of the
GRB led to the

discovery of an optical

afterglow (van Paradi|s

et. al) .

= Matzger et. al. measured a red-shift
z=0.835 in the

-G |||||||| Fay Bursd

K2/LEIS 030ct87UT

afterglow of
GRB970508.

GRBs are Cosmological!!!




Afterglow Observations

»

Gamma Ray ' SR , HST « STIS
Burst ‘ L e "Sotiree

GRB 970228 i 8

o TR e
?:

PRC97-30 » ST Scl OPO » September 16, 1997 « A. Fruchter (ST Scl) and NASA

GRE 370508 Optical Counterpart




Radio Observations -

A confirmation of the fireball model

= Afterglow of GRB9/70508
(Frail et. a):

1 Variability:
. Scintilations Goodmar)

_, Size afterone month_1.0cm.

1 Rising Spectrum at low
frequencies:

_ Self absorptionKatz & Pirar)
_, Size afterone month_10cm.

0 Relatvistic Motion!!!




Testing the Model

= Light Curve: t¥
- B=(3p-2)/4

= Observations gf=1.2 suggest
P=2.5

y Upper Spectral Index: - v
1 a=p/2

. For GRB9/0508:




Comparison with

Observations
Spectrum of GRB970508

Sari, Piran & Narayan, Wijers & Galama
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The Early Afterglow
and the Optical Flash

= The late afterglow observations
confirmed relativistic motion.

= But how to proof thaty>100 during
the GRB phase?

= This could be tested by early afterglow
observations(Sari \& Piran (Rome, Oct
1998 and Astro-ph/11/1/1999):

A very strong
optical flash
conciding
with

the GRB




GRB990123

= A very strong GRB (among 0.3% of
the stronges RS
bursts)

y-ray flux:
10%ergs/cni/sec

X-ray Afterglow - 16'tergs/cmi/sec
SIX hours after the burst,

Optical Emission coinciding with the
GRB at 9" magnitude.

z=1.6 2 1% ergs

JAN th Al t =2—MN 1) I
WA= ~r AlAaxns nt = I_c:r\lsed?

NI INJ UL I\~ \JMIMI\] CAL L7 Wik

Break in the decay - Jet!




GRB990123 - The
Prompt Optical Flash

1999 -0 - 23T0%:47:18,30 199%-01-23T09:47:4 3,50 1999 -1 - 23T09:48:05,7%

T T . ———
L e :

= ROTSE detection of prompt"9
magnitude optical flash.




GRB990123 Early
Light Curve

Sharp initial rise

ROTSE DATA
power law fit to ROTSE

R band
power law fit to the R band
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Gamma vs. Optical In
GRB990123

BATSE
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990123 Late Light

GRB 990123

TRANSIENT + HOST 3
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GRB990123 Discovery

Plate

GRB 990123: Optical Transient Discovery
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Observed
Afterglows

Gamma-Ray Bursis with Opiical Counterparis
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Afterglows are not scaled to the GRB$
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fast cooling
slow cooling




The Energy Crisis and
Beaming

m z=3.42 for GRB971214
Eisotropic>1053 €rgs

m 7z=1.6 for GRB990123
Eisotropic>1054 €rgs
- Beaming?




JETS and BEAMING

Particles spreads
_ _ sideways ‘b "
Particles remain quickly ,— Is “beame

within initial cone INto a
large cone

Radiation

Radiation iIs
“beamed” into y
a narrow cone

Jets with an opening angéeexpand forwards

until = ¢-! and then expand sideways
rapidly lowering quickly the observed flux)




Expected Light Curve

from a Jet
(Granot, Piran, Sari 1999)

Break aty =6




GRB980519 - The Jet?

@=1.15+-0.2
B=-2.0+-0.1
= Consistent with a jet:
@ = p/2
p=p
P=2.1=> a=1.05; B=2.1




CONCLUSIONS

s Additional Verification of the
Fireball and External-Internal
Model

o GRB/afterglow variability is
still a puzzle.

= A Speculation: 970228 and 970508
are the exceptions and 980519 and
GRB990123 are the rule

0 Jets In most GRBSs.

Search for “Orphan” afterglows

1 GRBs have a wide luminosity
function.

1 There is no “no host” problem
1 GRBs may or may not follow SFR.




Sources of GRBs?

The fireball model does not tell us
what Is the inner source .

The observed temporal structure
shows

7 The source must be compact (&).

11 Should operates fee 1 - 1000 seconds.
1 Should be highly variable.

1 one burst per galaxy per million years
1 following the star formation rate?




Binary Neutron Star

Mergers

0 1916+13: The Binary puIsa.
displays a T E

decay of its orbit due 3
to gravitational |
radiation emission.

Its two stars will :
collide and merge afterx:{}O9 years

= GRBs are produced by colliding neutron
stars at cosmologic

distancesEKichler,
Livio, Piran &
Schramn)

= The rate of binary

neutron star mergeslarayan, Piran &
Shemi; Phinne)/agrees with the observed
GRB rate.




Implications of GRBs

TheFireball model:

1 Additional source of cosmic rays
(Shemi and Pirgn

1 Origin of EEV cosmic rays\Waxman,
Vietri, Milgrom & Usov).

1 High energy neutrino bursBahcall &
Waxmar).

The neutron star merger model:
1 Associated low energy neutrinos burst.

1 Associated gravitational radiation
signal (the prime target of the
gravitational radiation detectors
and ).

Red-shift measurements

1 GRBs could be used explore the early
Universe.

After 30 years the mystery of GRBS
has been (at least partially) resolved)




