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Electron Neutrino Sources from the Core of the Earth
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The physical interpretation of extensive measurements of
electron neutrinos (in laboratories located on or somewhat
below the'Earth’s surface) often require geophysical motions
«concerning the possible neutrino sources. Here, we discuss
#he notion that the Earth’s core is a substantial source of low
energy ‘electron neutrinos.

PACS: 96.40.T, 14.60.L, 91.65

Our knowledge about the internal geophysical struc-
ture of the Earth has been summarized in the classic work
of Jeffreys [1]. In his work can be found the basic physics
of how the structured spherical shells of our planet have
‘been deduced. One employs the measured sound wave
propagation due to the seismic crunching and crackling
of Earth quakes. The standard geophysical model [2,3]
of the Earth is pictured (approximately to scale) below
in Fig.1.

FIG. 1. The shell structure of the Earth includes an inner
core with radius Ric, an outer core with radius Roe, a lower
‘mantle with radius Rim, a transition zone with radius R,
and a thin crust to the surface at radius R.. '

Less well developed are our notions of radioactive pro-
Gesses within the core and shell structure of the Earth.
Early discussions on the nature of nuclear physics within
the Earth are due to Darwin [4] and Rutherford [5]. Later
Jefireys states [6] “... it would be interesting to consider
what would happen if the present radioactive elements,

with their quantities adapted to 4 x 10° years ago, were
uniformly distributed ..., it is quite possible that radioac-
tive heating could produce fusion in a fraction of the age
of the Earth.”

Just as the solar neutrino flux [7] constitutes direct
evidence of muclear reactions within the Sun, an ob-
served geophysical neutrino flux would constitute direct
evidence of nuclear reactions within the Earth. Experi-
mental geophysical data will exist in laboratories located
on or somewhat below the Earth’s surface with large fidu-
cial volume neutrino detectors. The idea is to measure
the differential neutrino flux d?® (per unit time per unit
area) within a neutrino energy interval dE and incident
from a solid angle direction within dQ2. If 6 is the angle
between a line drawn from the laboratory to the center
of the earth and the direction of the solid angle d2, and
if there exist spherically symmetric sources, then the dif-
ferential flux has the functional form

( d’®

dEdQ

If 5(r, E)d®r denotes the number of neutrinos produced

within an earth volume °r per unit time with an energy

less than E, then the fiux of geophysical neutrinos seen in

a laboratory located em the Earth’s surface is described
(im an angular range 0 < @ < 7/2) by

F.(E,cos0) =

2cos? dne(r = ReV/1+ 22 — 2z cosb, E)
R=/0 ( dE )= @

Under the assumption that n.(r, E) is proportional to
the mass density p.(r) in the Earth, it is possible to plot
numerically the angular distribution of geophysical neu-
trinos (d®./dS2). We have carried out such a calculation
as shown in Fig.2 below. The mass density in the numer-
ical integrals are taken from tables provided by Birch [8].
For the purpose of conversion into a neutrino flux, we
have assumed one part per million of the nuclei f-decay
with a mean life-time of 4 x 10° years. These nuclear
physics numbers are in reasonable agreement with the
estimates of Jeffreys.

We find (using the above estimates) that in an Earth
bound laboratory the total geophysical electron neutrino
flux is at least comparable to the total solar electron neu-
trino flux. The theoretical angular distribution of the
geophysical neutrino flux is (of course) broader. Never-
theless, the magnitudes are sufficient to imply some pe-
riodic modulations in what has previously been regarded

) = F(E, cos). (1)
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as a purely solar neutrino flux. Modulations will occur
whenever the neutrino beam from the Sun is parallel (or
anti:parallel) to the neutrino beam from the Earth’s core.

(d®/d0)/(GHz/cm?)

cosb

FIG. 2. The angular distribution of geophysical neutrinos
in a model in which the source intensity of neutrino produc-
tion is proportional to the mass density. The geophysical mass
density used is due to Birch(8].

The peak in (d®./dY) as cosd — 1 is due to the fact
that the core of the Earth contains roughly half of the
Earth’s mass and thereby half of the Earth’s neutrino
sources in the model under consideration. The disconti-
nuity of the mass density at the core radius R,. is clearly
visible from the structure of the peak.

While the nuclear physics estimates within the core
of the Earth are mot as accurate as the nuclear physics
estimates within the core of the Sun, the above consider-
ations may be valid at least in order of magnitude, and
are surely worthy of further study. Recent geophysical
investigations [9] indicate a substantial concentration of
Uranium (and other radio active nuclei) in the Earth’s
core, since Uranium is totally miscible at the elevated
temperatures of the Earth’s core material. This recent
-geophysical work supersedes an earlier miscibility gap ar-
gument for the bulk of nuclear reactions to occur in the
mantle and/or above the mantle. Further discussions
may be found in the literature [10]. Given that nuclear
reactions take place in both the core and mantle, as well
as on the surface of the Earth, it should be of no surprise
that nature and not nuclear physicists built the first nu-
clear reactors. These naturally occurring nuclear reactors
have been relatively recently discovered [11].

Atmospheric neutrinos also require geophysical reason-
ing to trace their source. It has been assumed that cosmic
ray protons first produce pions which then decay via

t+-+p++v,.—>e++vg+l7p-+vp, (3)

T S puT e + ety (4)

From Eqs.(2) and (3), and in the absence of neutrino
oscillations, one expects [12] from atmospheric neutrinos
a ratio of

(M) 2. (5)
D, (Ve + Vc)

Initial atmospheric neutrino experiments [13,14] were
aimed at deducing neutrino oscillation magnitudes via
deviations from Eq.(5).

The notion of geophysical neutrino sources within the
Earth’s core was ignored in these experiments. However,
an “excess” (above and beyond the factor of two) of low
energy electron neutrinos heading upward from the earth
has been observed. In the most recent Super Kamiokande
[15] experiments, the electron neutrino excess was quite
pronounced. Note, in this regard, that our @ is related
to Osx used in the Super Kamiokande experiment by
0=m—0sx;ie.

cosf = —cosfsk. (6)

If we consider neutrinos with energy E < 0.4GeV, then
we estimate (from the excess electron neutrino data at
angles 0.6 < cos @ = (—cosfsx) < 1.0) the ratio

Be(ve,cos0 > 0.6 , E < 0.4GeV)
(ﬁ.(ve,ooso >06,E< 0.4GeV)) ~03, (7)

wherein the excess electron neutrinos are here presumed
to be of geophysical origin from within the Earth’s core.

We hope that the hypotheses (and the experimental
data) discussed here concerning geophysical electron neu-
trino sources within the Earth’s core, will inspire future
investigations. It appears within current neutrino detec-
tion technology to map, via Eqgs.(1) and (2), geophysical
nuclear reaction sources inside the Earth’s core. Such a
technique appears presently as a unique probe of such
distributions.
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