Physics Potential of Very Intense Conventional Neutrino Beams

Juan José Gómez Cadenas CERN & IFIC, University of Valencia

Outline

- Conventional vs. NuFact v beams
- Super Beam Scenarios
- A concrete scenario. Low energy SB from CERN to Modane
- Summary of Physics Potential
- Comparison with NuFact

Conventional vs. NuFact v Beams

Conventional Beams

- Mainly v_{μ} beam but ~1% contamination from other flavors
- Uncertainties in beam composition (π/K ratio) to the level of 5-10 %
- Appearance experiments must subtract irreducible beam background $\Rightarrow P(v_{\mu} \rightarrow v_{e}) \approx 1/\sqrt{N}$
- NuFact Beams
 - Pure, two flavor beams. No beam bkgnd. If detector backgrounds can be controlled then $\Rightarrow P(v_u \rightarrow v_e) \approx 1/N$
 - Small & controlled beam systematic

Conventional v Beam

Super Beams

- A super beam is a conventional v beam of high intensity
- Super beams occur as an (unavoidable) byproduct of a NuFact complex
- The intensity and energy of the beam depends on the proton driver
 - Energies can range from sub- to tenths of GeV
 - Proton driver power in the range 1-4 MW have been considered

SB Studies & Scenarios

- Study group in FNAL
 - Comprehensive paper by Barger, Geer, Raja & Whisnant
 - (S)JHF → 0.77-4MW @ 50 GeV, E_v~ 1GeV
 - SNuMi → 1.6MW @ 120 GeV, E_v > 3GeV
 - Various detectors & baselines studied
- Study group at CERN
 - Blondel, Bruguet, Casper, Donega, Gómez, Gilardoni, Hernández, Mezzetto
 - SPL →2.2 4MW @ 2.2 GeV E_v ~ 0.25 GeV
 - ~100 Km baseline, Water & Liquid Scintillator detectors

Beam Energy & Baselines

- FNAL group has studied four energy regimes
 - SJHF $E_v \sim 1 \text{ GeV}$
 - Baseline for SJHF ~ 295 km
 - SNuMI, LE(E_v ~ 3 GeV), ME(E_v ~ 7 GeV) & HE (E_v ~ 15 GeV)
 - Baselines: 730,2900,7300,9300 km
- CERN group has studied one energy regime
 - SPL $E_v \sim 250 \text{ MeV}$
 - Baselines: 70km, 120 km

Detectors(I)

- FNAL group has considered three detector scenarios
 - A: Liquid Argon detector with 30 kt fiducial mass
 - ε_s ~ 50 %,
 - $f_B (\pi^0/e) \sim 0.001$, $f_B (Beam) \sim 0.003$
 - F: Iron Sampling Calorimeter with 10 kt fiducial mass
 - ε_s ~ 90 %,
 - $f_B (\pi^0/e) \sim 0.01$, $f_B (Beam) \sim 0.003$
 - W: Water Cerenkov Detector with 220 kt fiducial mass
 - ε_s ~ 70 %,
 - $f_B (\pi^0/e) \sim 0.02$, $f_B (Beam) \sim 0.003$

Detectors(II)

- CERN group has considered two detector scenarios
 - C: Water Cerenkov Detector with 40 kt fiducial mass
 - $\epsilon_{s} \sim 70$ % (from a full simulation + analysis)
 - $f_B(\pi^0/e) \sim 0.001$ (full simulation + analysis using energy flow fitter to identify π^0)
 - f_B (Beam) ~ 0.005 (full simulation of beam)
 - M: Liquid Scintillator 40 kt fiducial mass
 - $\epsilon_{\rm s}$ ~ 50 %, (use MiniBoone numbers)
 - $f_B(\pi^0/e) \sim 0.01$ (use MiniBoone numbers)
 - f_B (Beam) ~ 0.005 (full simulation of beam)

SB of low energy. The best bet?

- Beam contamination
 - Best is below Kaon production threshold
 - But $\pi^+/\pi^- \approx 1/3$
- Detector Backgrounds
 - At low energies:
 - Good $\mu/e \pi^0/e$ separation
 - Below charm and tau threshold
- Ideal regime $\Rightarrow E_v < 1 \text{ GeV}$
- But low rates \Rightarrow Requires large masses
- Oscillation peaks at short distances (~100 Km)

(S)JHF Beam

- JHF approved!
 - 50 GeV protons 0.77 MW upgradable to 4MW
 - ν beam of Ev ~ 1 GeV to SuperK
- Advantages
 - Progressive road to super beam
 - Suitable energy for water detector (already existing)
 - π⁺/π⁻ ~ 1
- Disadvantages
 - Kaon contamination in beam (systematics π/K ratio)
 - Detector backgrounds (π^0/e)

CERN to Modane SB

- Design of the CERN NuFact proton driver is based on a 4 MW, low energy proton driver (SPL)
- π collection and sign selection using a magnetic horn
- Resulting v beam has the following features:
 - Low Energy (Ev ~ 250 MeV)
 - Oscillation peaks ~ 100 km from source
 - Negligible Kaon content
 - Reduced beam contamination & systematics
 - But $\pi^+/\pi^- \sim 3$

Particles at target 20000 16000 Protons 17500 14000 $P_t \pi^+$ 15000 12000 12000 e^+ 12500 10000 e 10000 10000 8000 7500 π^+ 6000 5000 8000 π^{-} 4000 2500 6000 0 8 10 12 6 1.6 0.2 0.6 0.8 1.2 1.4 1.8 0.4 4000 Mars simulation GeV/c of particle 2000 **P** tot π^+ production 0 0,2 0,4 0,6 0,8 1,2 1,4 1.6 0 1 1.8 Juan José Gómez Cadenas Neutrino Telescopes, Venice, 3/5/2001 March, 20001

Detectors

- Water Cerenkov (á la SuperK)
 - Full simulation of detector response
- 2. Liquid Scintillator (á la Boone)
 - Extrapolation from Mini Boone studies

- •Vertex from timing
- •Direction(s) from ring edge
- •Energy from pulse height, range, opening angle
- •Particle ID from hit pattern, opening angle, muon decay

Water Detector

- •40 Kt fiducial mass. Half SuperK PM coverage?
- •Excellent particle ID. Minimize $\mu/e \pi^{0}/e$ confusion
- •Good efficiency at low energies
- •Attenuation length (@420 nm): ~100m
- •Energy scale: ±2.4%
- •Particle ID: ~98%

✓Momentum resolution: $\pm 2.5\%/\sqrt{E}$ + 0.5% (e), $\pm 3\%(\mu)$ ✓Vertex resolution: 40cm

v_e Appearance Backgrounds

- Detector backgrounds
 - μ miss-identification
 - Neutral Current π^0 production
 - Resonant
 - Coherent
 - Diffractive
 - Hadronic interactions
 - In Oxygen nucleus
 - In water
- Beam background

µ/e Background Rejection

Particle Identification Cut

- Use Cerenkov light pattern (including opening angle, if possible) as primary µ rejection
- Tighten cut to reduce miss-ID further
- v_e CC Efficiency: 94%
- v_{μ} CC Efficiency: ~1%

Muon Decay and Visible Energy Cuts

- Muon decay identification using delayed coincidence
- Only ~22% of µ⁻ absorbed before decay
- Visible Energy cut:
- E_{vis} (= $p_{electron}$) > 100 MeV
- $\epsilon_{\mu} \sim 0.1 \%$

π^0 /e Background Rejection based on sophisticated energy flow fitter

Summary on Background Rejection

- Apply energy-flow fitter to surviving events
- π^0/e at 0.1 % level
- μ/e at 0.1 % level
- Signal efficiency very high (~80 %)

Assumed oscillation Parameters

- $\sin^2 2\theta_{12} = 0.8$
- $\sin^2 2\theta_{23} = 1$
- $\sin^2 2\theta_{13} = 0.01$
- $\Delta m_{12}^2 = 5 \times 10^{-5} \text{ eV}^2$
- $\Delta m_{23}^2 = 3 \times 10^{-3} \text{ eV}^2$

Results at 130 Km

Juan José Gómez Cadenas Neutrino Telescopes, Venice, March, 20001

30

Sensitivity to θ_{13} (Water detector)

Juan José Gómez Cadenas Neutrino Telescopes, Venice, March, 20001

Sensitivity to CP violation (FNAL study)

3500

3000

- SJHF + 220 kt water det + 2% systematics
- 3σ effect for:
 - $sin^2\theta_{13} = 0.1$
 - $\delta m_{12}^2 = 510^{-5} \text{ eV}^2$
 - $\delta = 90^{\circ}$
- 3 σ effect also for:
 - $\sin^2 \theta_{13} = 0.02$
 - $\delta m_{12}^2 = 10^{-4} \text{ eV}^2$
 - $\delta = 90^{\circ}$
- Small region for which maximal CP violation may be observed

2×10⁻⁴ 1×10⁻⁴ 2500 5×10⁻⁵ $0 = \delta$ 2000 N(e+) 0.1 1500 $\delta m_{32}^2 > 0$ -90 1000 0.05 500 $0.02 = \sin^2 2\theta_{13}$ 0 500 1500 2000 2500 3000 0 1000 3500 N(e-)

Juan José Gómez Cadenas Neutrino Telescopes, Venice, March, 20001

(d) SJHF

L = 295 km

Summary (I)

- Most of the phase space covered by FNAL + CERN studies
- A personal opinion
 - Most realistic/interesting scenarios are SJHF and CERN to Modane scenario
 - Low energy superbeams to short distances
 - Available large mass detector (SuperK like)
 - SJHF vs SPL?
 - SJHF (-) K contamination in beam + π^0 /e separation
 - SPL (-) π^- production $\approx \pi^+/3$ Bad for CP studies

Summary(II)

- Super Beams can do well in "precision" measurement of oscillation parameters
 - Sensitivity to s₂₃, θ₂₃ At 1 % level
 - Sensitivity to $s_{13} \approx 3-5 \ 10^{-3}$,
 - one-two orders of magnitude better than MINOS/OPERA
 - Two orders of magnitude worst than NuFact
- Marginal sensitivity to δ
 - Limited by
 - π^- Beam (at low energy)
 - Beam background
 - Systematic errors on cross sections

Super Beams vs NuFact

- Super Beams are no alternative to NuFact
 - Marginal sensitivity to a CP violating phase
 - Limited sensitivity to θ_{13}
- Super Beams are not "fast & dirty" intermediate experiments "while we wait for NuFact"
 - They require a very large detector 1-5 x SuperK
 - Very long runs (≈10 years)
- However, SJHF may be there before NuFact (and SuperK is already there!)
- Perhaps the way to go if nature has not chosen LMA