What 's next in Accelerator Particle Physics (somewhat CERN biased...) Neutrino Telescopes Conference Venezia, March 9, 2001

> Luciano MAIANI CERN, Geneva, Switzerland

E. Fermi 's maximal accelerator (Seminar at APS, 29.01.1954)

Warch 9 2001

L. Maiani. WHAT'S NEXT?

The LHC dipole n. 0001

Artist view of the LHC in the LE P Tunnel

March 9, 2001

L. Maiani. WHAT'S NEXT?

۲ Summary What 's next in Particle Physics • • Neutrino masses and oscillations • Higgs boson search • Supersymmetry • Extra dimensions? Accelerators for the future • • Towards a nu-factory, CERN 's SPL • VLHC?

- CLIC
- The extreme optimist 's scenario
- Conclusions

Thanks to:

J-P. Delahaye, J. Ellis, F. Gianotti, G. Giudice, K. Hubner, L. Evans, A. DeRoeck.

L. Maiani. WHAT'S NEXT?

Neutrino mass & oscillations

• Higgs hunting : LEP and elsewhere

۲

• Evidence for a Higgs particle at about 115 GeV/c² found in the last months of operation in year 2000

Higgs Boson at the LHC

- SM Higgs boson can be discovered at $\approx 5 \sigma$ after ≈ 1 year of operation (10 fb⁻¹/ experiment) for m_H $\approx 150 \text{ GeV}$
- Discovery faster for larger masses
- Whole mass range can be excluded at 95% CL after ~1 month of running at 10³³ cm⁻² s⁻¹.

results are conservative:

- -- no k-factors
- -- simple cut-based analyses
- -- conservative assumptions on detector performance
- -- channels where background control is difficult not included, e.g $WH \rightarrow l\nu b\bar{b}$

L. Maiani. WHAT'S NEXT?

F. Gianotti

Measurement of the SM Higgs parameters at LHC: mass to ~0.1%, width to $\leq 10\%$, rates ($\sigma \times BR$) to ~10%, ratios of couplings (WWH, ZZH, ttH, bbH) to 10-20%

Higgs decay branching ratios at a Linear e⁺e ⁻ Collider (TESLA/NLC/JLC)

accuracy on δ BR/BR (M_H = 120 GeV): bb : 2:4% WW* : 5:4% cc : 8:3% gg : 5:5% $\tau\tau$: 6:0% ratio of the $\tau\tau$ to the bb branching ratios = $(m_{\tau}/m_{b})^{2}$ (P. Zerwas, LC study)

Branching ratios of SM Higgs decays into fermion and WW*pairs M. Battaglia, hep-ph/9910271.

13

L. Maiani. WHAT'S NEXT?

Supersymmetry in the TeV range

- SUSY charges carry 1/2 spin (matter-forces unification)
- A bridge towards gravity $\{Q_{\alpha}, Q_{\beta}\} = \gamma^{\mu}{}_{\alpha\beta}P_{\mu} + \dots$
- TeV scale indicated by hierarchy problem
- Study of SUSY spectrum: deep in multi TeV region

Lightest SUSY Particles may still be around from BIG-BANG

March 9, 2001

L. Maiani. WHAT'S NEXT?

Getting into TeV and many TeV region with complementary probes is necessary to fully understand the Supersymmetry spectrum

- •
- •

Expected reach of CMS in various channels & the cosmological parameters

Expected reach in various channels

m SUGRA; tg β = 2 (~ same up to tg β ~ 5), A₀ = 0, μ < 0 5 σ contours (N_{σ} = N_{sig}/ $\sqrt{N_{sig}+N_{bkgd}}$) for 10⁵pb⁻¹

۲

L. Maiani. WHAT'S NEXT?

۲

۲

Extra space dimensions?

Waves (and particles) of large wave length (small energy) simply do not fit in the curved dimension
how small is R?

Kaluza & Klein 1930's

« if a cat would disappear in Pasadena and reappear in Erice, this would be an example of global cat conservation.
This is not the way cats are conserved » (R.P. Feynman)
.... in 4 dimensions

Superstring theory not consistent in 4 dimensions Extra curved dimensions required Scale? $\approx 1/M_{Planck}$?

March 9, 2001

L. Maiani. WHAT'S NEXT?

Extra Dimensions at mm scale?

Arkani-Hamed, Dimopoulos, Dvali (1998)

March 9, 2001

The universe viewed in the small: quarks, leptons, and gauge fields are bound to a D-brane localised in an extra compact dimension.

$$V = \frac{m_1 m_2}{(M_D)^{2+D}} \frac{1}{r^{1+D}} = \frac{m_1 m_2}{(M_{Planck})^2} \frac{1}{r} (\frac{R}{r})^D$$
$$R = \frac{1}{M_D} (\frac{M_{Planck}}{M_D})^{\frac{2}{D}} \qquad \begin{array}{l} M_D = 1 \text{ TeV} \\ R \approx \text{ mm (D=2)} \\ R \approx \text{ fermi (D=6)} \end{array}$$

Strategy for the future

High Energy Frontier:

- LHC
- e^+e^-LC , $E_{tot} < 1 \text{ TeV } e^+e^-$
- LC, $E_{tot} \approx multiTeV (CLIC)$
- VLHC

Flavour physics:

Neutrino superbeam Neutrino factory

<u>Further in the future</u>: Muon collider •as soon as possible!•complementary, necessary step (emittance...)

- exploration of nearby "Beyond the Standard Model"
- Anom. Dim's. up to 40-50 TeV
- The unexpected

 Θ_{13} ; CP violation in lepton sector

L. Maiani. WHAT'S NEXT?

March 9, 2001

Nu-factory status

- A truly international effort (e.g. FermiLab and BNL studies)
- substantial investment required (proton driver only ≈20%): more emphasis on CNGS2 ?
- @ CERN:
 - studies have started (SPL, high power target, HARP...)
 - European collaboration started (CEA, IN2P3, INFN, RAL...)
 - Co-ordination among Int.'l Laboratories is being proposed (to FNAL, LBL, BNL, Cornell, KEK+ EU laboratories)
- SPL : cost=320MCHF; beneficial to ISOLDE, CNGS, LHC...

L. Maiani. WHAT'S NEXT?

CERN neutrino beam to Gran Sasso

March 9, 2001

From septum blades to Stability Islands

2000 the intensity delivered to the SPS was between 1 to 1 . 7 •10¹³ ppp. In 2001 it is planned to deliver up to 2•10¹³ ppp. For CNGS it is planned to deliver more than 3 •10¹³ ppp.

Isometric schematic of the CERN reference scenario for a Neutrino Factory(CERN, NF Note 28, 16th August 2000)

The SC cavities for $\beta < 1$

The β =0.7 4-cell prototype

CERN technique of Nb/Cu sputtering for β=0.7, β=0.8 cavities (352 MHz):
excellent thermal and mechanical stability (very important for pulsed systems)
lower material cost, large apertures, released tolerances, 4.5 °K operation with Q = 10⁹

β Bulk Nb or mixed technique for β=0.52 (one 100 kW tetrode per cavity)

۲

L. Maiani. WHAT'S NEXT?

Layout on the CERN site

Linac + klystron gallery parallel to the fence of **Meyrin site (Route** Gregory) Economic trench excavation Geological advantages (tunnel on"molasse", no underground water) • Minimum impact on the environment (empty field) • Simple connection to PS & ISR via existing tunnels Use some of the old ISR infrastructure (electricity, cooling)

L. Maiani. WHAT'S NEXT?

Particle yield at the SPL target

emittance evolution in the front end of the neutrino factory

•

40kton Water Cerenkov L=100km

March 9, 2001

NU SUPERBEAMS

D.Casper (CERN Oscillation Working Group)

Oscillation Signal

Summary

half way from

v factory !

- Most of the phase space covered by FNAL + CERN
- Sensitivity to s13 $\sin^2(2\theta_{13}) \approx 10^{-2} 10^{-3}$
 - One to two orders or magnitude better than MINOS/OPERA

 $\sin^2(2\theta_{13}) \approx 10^{-4} - 10^{-5}$

- Two orders of magnitude worst than NuFact
- Sensitivity to δ.
 - Still to be fully evaluated
 - Limited by
 - Beam background
 - Systematic errors on cross sections

Very Large Hadron Collider (VLHC)

New study at FNAL (convener: J. Strait) to guide R&D

- VLHC1 initial machine 15-20 TeV per beam
- VLHC2 second phase: VLHC1 as injector to VLHC2 (87.5 TeV/beam)

both accelerators in same tunnel ELN LHC Phase 1 Phase 2 (INFN)(1996) 7 E_{beam} [TeV] 20 87.5 100 8.3 12 Low f. → 2.0 High f. → 10.0 B_{dip} [T] 33.3 29.1 R_{bend} [km] Arc packing factor 95.0% 83.0% 35.1 35.1 R_{arc} [km] Carc [km] 220 220 20 20 L_{straights} [km] 238 27 C_{total} [km] 240 240 10^34 Luminosity $[\text{cm}^{-2}\text{s}^{-1}]$ 10^35 10^34 **Preliminary parameter list** March 9, 2001 L. Maiani. WHAT'S NEXT? 35

۲

۲

Vacuum Issues (Mauro Pivi / LBL)

Synchrotron radiation					
Photon flux	Γ , ph/m-sec	$0.34 \ge 10^{16}$	$1.26 \ge 10^{16}$	LHC	ELN (1996)
Critical energy	Ec, keV	0.48	3.4	0 044	
Power deposited per meter	$P/2\pi_1O, W/m$	0.082	2.12	0.2	2.46
Total power (per beam)	P, kW	47.5	176.6	7.6	585
Energy loss per turn	ΔE , MeV/turn	0.53	3.7	0.007	28
Radiation damping time (horizont. ampl.)	$ au_{D}$, hrs	114	2.6	52	1.5

High field:

power deposited by Synchr.Rad. difficult to take out because of low temperature!

LHC: heat deposited on the inner tube which is kept at $\approx 19^{0}$ K by Ne coolant

March 9, 2001

L. Maiani. WHAT'S NEXT?

Photo electrons acceleration at LHC may produce additional heat load

Linear Collider working regions

CLIC Test Facility 3

Housed in LEP Pre-Injector building Construction 2001-2003

Drive Beam Injector

۲

Drive Beam Accelerator : 20 Accelerating Structures 3 GHz -7.4 MV/m - 1.20 m powered by 10 Modulators/ 45MW 4.5 μs Klystrons with LIPS (x2)

> 4 A - 2100 b of 2.75 nC 178 MeV - 1.40 א ש

X 2 Delay (43 m) X 5 Combiner **1GeV Main Beam Accelerator** Ring (86 m) 14 Accelerating Structures 30 GHz - 150 MV/m - 0.5 m from SOMEV to I Ger **Drive Beam Decelerator** 7 Transfer Structures - 30 GHz 40 A - 178 MeV 140 ns **CLIC TEST FACILITY - CTF 3 - Nominal** Test of the Drive Beam Generation, Acceleration & RF Multiplication by a factor 10 March 9, 2001 L. Maiani. WHAT'S NEXT? 40

CLIC test facility n.3

- to demonstrate a novel concept of drive-beam generation
- to provide the nominal rf power to a few accelerating sections which in turn will operate with the nominal accelerating gradient.
- CTF3 will be a unique 30 GHz high-power rf source for the tests of all the rf components.
- CTF3 will evolve in a staged approach where construction phases alternate with beam test periods. The plan is to have CTF 3 fully exploited by 2005.

CLIC status

- CTF3 construction starts in 2001
- Next step (after positive results from CTF3): a 600m module
- Collaborations with INFN, IN2P3, SLAC are active
- Closer collaboration with European Laboratories is being discussed (Orsay, RAL, Frascati ...)
- CLIC physics studies started at CERN

GEOPHYSICAL FEATURES

۲

 \bullet

: Global Accelerator Network (ICFA)

Global Accelerator Network (ICFA)

۲

annual budget, in unit of CERN budget (very crude):

EUROPE	1 + 0.6 to	1
USA	1 to 1.5	
Japan	0.4	
total	3 to 4	say: 4 BCHF/year

Investments over 10 year in the GAN≈ 0.3 budget/ (10 years) ≈ 12 BCHF

Some cost estimate (European accounting, only material cost, ≈ 0.5 US accounting) in unitis of the LHC material cost (1 LHC \approx 3 BCHF):

NLC (4 B\$)	2.1	≈ 12 BCHF
Nu factory (1.1 B\$)	1.7	

- Conclusions
- Many fascinating problems in 1-10 TeV region
 - from « normal business »: Higgs, SUSY,
 - to « new world » discoveries : extramensions
- We need to understand neutrinos better
- Support accelerator physics!!!
- Consensus:
 - LHC, sub-TeV e⁺e⁻ LC
 - CLIC, VLHC
 - nu-factory
- Can we make them in reasonable time? Can we afford?
 - We can perhaps realize the full programme in 15 to 20 years, but:
 - Better efficiency in decision making
 - Respect User distribution, to keep young generations in the game

A transition to a new global organisation, similar to EU transition from National Laboratories to CERN ???

L. Maiani. WHAT'S NEXT?