Super-Kamiokande Atmospheric Neutrinos Results

The Super-Kamiokande Experiment

Clark McGrew

March 6, 2000

$\begin{array}{l} \mbox{Evis} < 1.33 \mbox{GeV} \\ \mbox{P}_e > 100 \mbox{MeV/c} \\ \mbox{P}_\mu > 200 \mbox{MeV/c} \\ \mbox{DATA} & \mbox{MC(Honda)} & \mbox{MC(Bartol)} \\ 1 \mbox{R} & 5652 & 6740.4 & 6577.4 \\ \mbox{e-like} & 2864 & 2667.6 & 2625.3 \\ \mbox{μ-like} & 2788 & 4072.8 & 3952.2 \\ 2 \mbox{R} & 1492 & 1737.2 & 1710.3 \\ \mbox{$\geq 3R$} & 667 & 847.9 & 846.1 \\ \hline \mbox{TOTAL} & 7811 & 9325.5 & 9133.8 \\ \end{array}$	$ \begin{array}{c ccccc} (1) \ FC & ({\sf Evis} > 1.33 {\sf GeV}) \\ & & DATA & MC({\sf Honda}) & MC({\sf Bartol}) \\ 1R & 1184 & 1451.1 & 1473.6 \\ e-like & 626 & 612.8 & 635.7 \\ \mu-like & 558 & 838.3 & 838.0 \\ 2R & 495 & 634.1 & 649.5 \\ \geq 3R & 823 & 1014.0 & 1058.2 \\ \hline TOTAL & 2502 & 3099.1 & 3181.4 \\ \end{array} $
$\frac{\mu/e)_{\text{DATA}}}{(\mu/e)_{\text{MC}}} = 0.638 \pm \begin{array}{c} 0.017\\0.017\\\text{stat.}\end{array} \pm 0.050 \text{ (Honda)} \\ \text{sys.} \end{array}$ $= 0.647 \pm \begin{array}{c} 0.017\\0.017\\\text{stat.}\end{array} \pm 0.051 \text{ (Bartol)} \\ \text{sys.} \end{array}$	(2) PC DATA MC(Honda) MC(Bartol) TOTAL 754 1065.0 1123.4 *All events are assumed to be μ -like. *Fraction of CC v_{μ} , \dot{v}_{μ} events in the PC sample is estimated to be (97-98) $\frac{(\mu/e)_{DATA}}{(\mu/e)_{MC}} = 0.675 \pm \frac{0.034}{0.032} \pm 0.080$ (Honda) $\frac{FC + PC}{=} = 0.679 \pm \frac{0.034}{0.032} \pm 0.080$ (Bartol) $= 0.652 \pm \frac{0.039}{0.037} \pm 0.095$ (Honda)

Summary of Upward Through-going μ 's in Super-K

Selection Criteria

- Zenith angle $-1 \le \cos \Theta \le 0$
- Total $Q>12000 {\rm p.e.}$ and track length $\geq 7 {\rm m}$
- Veto counter signal at entrance and exit points

Data

- 1268 live-days (04/96) \rightarrow (04/00)
- 1416 Events (minus BG in last $\cos\Theta$ bin $10.2\pm0.9)$
- Observed flux: $\Phi_t = 1.70 \pm 0.05 (\text{stat.}) \pm 0.02 (\text{syst.}) \times 10^{-13} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$
- Expected flux:

 $\Phi_{theo} = 1.97 \pm 0.44 (\text{theo.}) \times 10^{-13} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$ (Bartol) $\Phi_{theo} = 1.84 \pm 0.41 (\text{theo.}) \times 10^{-13} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$ (Honda)

Systematic Error

Track Length	$\pm 0.5\%$ Livetime	$\pm 1.0\%$
Effective Area	$\pm 0.3\%$	
Efficiency	$\pm 1.2\%$	(bin-by-bin)
$\Delta \Theta_{fit}$	$\pm 1.0\%$	(only for horizontal bin)

Summary of Upward Stopping μ 's in Super-K

Selection Criteria

- Zenith angle $-1 \le \cos \Theta \le 0$
- Total $Q > 12000 {\rm p.e.}$ and track length $\geq 7 {\rm m}$
- Veto counter signal only at entrance

Data

- 1247 live days(04/96) \rightarrow (04/00)
- 345 Events (minus BG in last $\cos\Theta$ bin 23.1 ± 9.2)
- Observed flux: $\Phi_s = 0.41 \pm 0.02 ({\rm stat.}) \pm 0.02 ({\rm syst.}) \times 10^{-13} {\rm cm}^{-2} {\rm s}^{-1} {\rm sr}^{-1}$
- Expected flux:
 $$\begin{split} \Phi_{theo} &= 0.73 \pm 0.16 (\mathrm{theo.}) \times 10^{-13} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \text{ (Bartol)} \\ \Phi_{theo} &= 0.68 \pm 0.15 (\mathrm{theo.}) \times 10^{-13} \mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \text{ (Honda)} \end{split}$$
- Observed $\mathcal{R} = \Phi_s/\Phi_t$: $0.242 \pm 0.017(\text{st at.})^{+0.013}_{-0.011}(\text{syst.})$
- Expected $\mathcal{R} = \Phi_s / \Phi_t$: $\begin{array}{c} 0.372^{+0.049}_{-0.045}(\text{theo.}) \end{array} (\text{Bartol}) & 0.368^{+0.049}_{-0.044}(\text{theo.}) \end{array} (\text{Honda})$
- Double Ratio $\frac{\left(\Phi_{e}/\Phi_{t}\right)_{da ta}}{\left(\Phi_{e}/\Phi_{t}\right)_{theo}}$: $\boxed{0.649 \pm 0.043(\text{st at.}) \pm 0.092(\text{syst.}) = 0.649 \pm 0.102(\text{all error})} (\text{Bartol})$

Systematic Error

Track Length	$^{+4.9}_{-4.1}\%$
Livetime	$\pm 1.0\%$
Efficiency	$\pm 1.0\%$

 u_{μ} and u_{s} have different interactions with matter

- Induces an MSW like matter effect.
- Changes the expected zenith angle distribution.

 $u_{\mu} \leftrightarrow \nu_{s}$ can be tested with:

- Up-going through muon data
- Partially contained data
- Fully contained NC enriched data

Use up/down ratios to gain statistical weight.

Observation $\nu_{\mu} \leftrightarrow \nu_{\tau}$ is favored.

Assume $\nu_{\mu} \leftrightarrow \nu_{\tau}$ is established as the dominant oscillation.

• For $\Delta m^2 = 3 \times 10^{-3} \text{ eV}^2$, 74 ν_{τ} CC events expected

- Signal to Noise of 0.7%

- Three different analyses done (not statistically independent)
 - Likelihood Analysis using "standard" SK variables.
 - Neural Net Analysis using "standard" SK variables.
 - Energy Flow Analysis using event shape variables.

to

Cuts and Efficiency

Cut	au	$ u_{e,\mu}$	Data
Initial	4069	65786	10594
$E_{vis} > 1330 \; {\rm MeV}$	3411 (84%)	15657 (24%)	2525 (24%)
NHITAC \leq 10	3377 (99%)	15500 (99%)	2502 (99%)
\geq 1 showering track	3073 (91%)	8627 (56%)	1476 (58%)
Cluster	2642 (86%)	5521 (64%)	989 (67%)
μ -like	2503 (95%)	4091 (74%)	731 (74%)
Likelihood > 0.0	1251 (50%)	1391 (34%)	292 (40%)
Total	1251 (31%)	1391 (2.1%)	292 (2.7%)

