Sudbury Neutrino Observatory

- Design
- Physics Objectives
- Calibration
- Data
- Status and Plans

Canada:	<u>US:</u>	<u>UK:</u>
Carleton	Brookhaven NL	Oxford
UBC	Lawrence Berkeley NL	
Guelph	Los Alamos NL	
Laurentian	Pennsylvania	
Queen's	Washington	

SNO Physics Goals

- Search for v flavor change Ratios of CC/ES, CC/NC
- Spectral Distortons
- ⁸B Total Flux (test of solar models)
- Time dependences:

Diurnal

Annual

Solar cycle

- Measurement of hep flux
- Supernova watch, relic SN neutrinos
- Antineutrinos
- Atmospheric neutrinos
 - ν above the horizon

v/anti-v ratio

Detector Performance

February 2001

Trigger Rates and Thresholds

Trigger Type	Hardware Threshold	Rate (Hz)
Pulsed Trigger	Zero Bias	5
100 ns Coincidence	16 PMTs	8
20 ns Coincidence	16 PMTs	0.02
Energy sum	~150 p.e.	4
Prescaled (1:1000)	11 PMTs	0.1

Trigger rate ~ 17 Hz Hardware threshold ~ 2 MeV

Radioactivity in Light Water

H. Robertson Venice 3/01

Radioactivity in Heavy Water

Goal: $d(\gamma,n)p < 5\%$ of SSM NC signal

SN O

Livetime

A Neutrino Event

CC Analysis for Solar Neutrinos

• CC cross section uncertainty ~3% (also CC/ES)

• *CC/NC* < 1%

Systematic uncertainty goals:

- Energy calibration 1%
- Fiducial volume 1%
- Background from instrumental light << 1%

HV Breakdown at underwater end

"Bubbler"

Variation of response across the detector

⁸Li Calibration

Produced by (n,α) on ¹¹B. 13 MeV endpoint, $\tau_{1/2} = 0.84$ s β are tagged by α detection

High Energy calibration point. Energy dependence of sacrifice.

³H(p,γ)⁴He Accelerator Source: 19.8-MeV Gammas

Electrode E3 (ground)

Target Mount (-20 to -30 kV)

Getter Shroud

Getter Current Feedthrough

Discharge Magnet

Spectrum of 19.8-MeV γ s from ³H(p, γ)⁴He gun (2 runs), and Gaussian fit (line).

CC/ES ratio can yield NC rate

SNO

SNO has started its physics program

• SNO will soon give us:

- o Measure of the solar v_e flux
- o Ratio CC/ES
- o First high-resolution solar v_e spectrum
- o First high-resolution hep spectrum
- o First measure of total flux of v_{e} , v_{μ} , v_{τ}

