### **Possible Consequences of Density Dependent Neutrino Masses**

Patrick Huber

University of Wisconsin, Madison

based on

V.D. Barger, PH and D. Marfatia, hep-ph/0502xxx.

XI International Workshop on Neutrino Telescopes February 22-25, 2005 Venice, Italy

#### Motivation

- Motivation
- Framework

- Motivation
- Framework
- Atmospheric neutrinos

- Motivation
- Framework
- Atmospheric neutrinos
- Solar neutrinos

- Motivation
- Framework
- Atmospheric neutrinos
- Solar neutrinos
- Conclusion

#### • mass varying neutrinos may explain $\Omega_{\Lambda} \sim \Omega_{matter}$

R. Fardon, A. E. Nelson and N. Weiner, JCAP 0410 (2004) 005.

• mass varying neutrinos may explain  $\Omega_{\Lambda} \sim \Omega_{\text{matter}}$ 

R. Fardon, A. E. Nelson and N. Weiner, JCAP 0410 (2004) 005.

• this is achieved by coupling the neutrinos to a light scalar field

• mass varying neutrinos may explain  $\Omega_{\Lambda} \sim \Omega_{\text{matter}}$ 

R. Fardon, A. E. Nelson and N. Weiner, JCAP 0410 (2004) 005.

- this is achieved by coupling the neutrinos to a light scalar field
- the scalar field also may induce a coupling to other particles

• mass varying neutrinos may explain  $\Omega_{\Lambda} \sim \Omega_{matter}$ 

R. Fardon, A. E. Nelson and N. Weiner, JCAP 0410 (2004) 005.

- this is achieved by coupling the neutrinos to a light scalar field
- the scalar field also may induce a coupling to other particles
- in this way  $m_{\nu} \to m_{\nu}(\rho)$

• mass varying neutrinos may explain  $\Omega_{\Lambda} \sim \Omega_{matter}$ 

R. Fardon, A. E. Nelson and N. Weiner, JCAP 0410 (2004) 005.

- this is achieved by coupling the neutrinos to a light scalar field
- the scalar field also may induce a coupling to other particles
- in this way  $m_{\nu} \to m_{\nu}(\rho)$

Assuming  $m_{\nu} = m_{\nu}(\rho)$ 

What are the consequences for neutrino oscillation?

D. B. Kaplan, A. E. Nelson and N. Weiner, Phys. Rev. Lett. 93, 091801 (2004).

K. M. Zurek, JHEP 0410 (2004) 058.

2-flavor case

$$\mathcal{H}_{\rm MVN} = \frac{1}{2E} U \left( \begin{array}{cc} (m_1 - M_1(r))^2 & M_3(r)^2 \\ M_3(r)^2 & (m_2 - M_2(r))^2 \end{array} \right) U^{\dagger}$$

Ordinary matter potential

$$\mathcal{H}_{\rm m} = \frac{1}{2E} \left( \begin{array}{cc} A(r) & 0\\ 0 & 0 \end{array} \right)$$

with

 $A(r) = 2\sqrt{2} G_F E_\nu n_e(r)$ 

# General form of $M_i$ $M_i = \frac{\lambda_{\nu_i}}{m_{\phi}^2} \left[ \lambda_e n_e + \sum_i \lambda_{\nu_i} \left( n_{\nu_i}^{C\nu B} + \frac{m_{\nu_i}}{E_{\nu_i}} n_{\nu_i}^{\text{rel}} \right) \right]$

General form of  $M_i$  $M_i = \frac{\lambda_{\nu_i}}{m_{\phi}^2} \left[ \lambda_e n_e + \sum_i \lambda_{\nu_i} \left( n_{\nu_i}^{C\nu B} + \frac{m_{\nu_i}}{E_{\nu_i}} n_{\nu_i}^{\text{rel}} \right) \right]$   $m_{\phi}^2 < 4 \cdot 10^{-8} \text{ eV}^2 \text{ and } \lambda_e < 0.01 \, m_{\text{N}} / M_{\text{Pl}} \sim 10^{-21}$ 

E. G. Adelberger, et al., Ann. Rev. Nucl. Part. Sci. 53 (2003) 77.

General form of  $M_i$   $M_i = \frac{\lambda_{\nu_i}}{m_{\phi}^2} \left[ \lambda_e n_e + \sum_i \lambda_{\nu_i} \left( n_{\nu_i}^{C\nu B} + \frac{m_{\nu_i}}{E_{\nu_i}} n_{\nu_i}^{\text{rel}} \right) \right]$   $m_{\phi}^2 < 4 \cdot 10^{-8} \text{ eV}^2 \text{ and } \lambda_e < 0.01 \, m_N / M_{\text{Pl}} \sim 10^{-21}$ E. G. Adelberger, *et al.*, Ann. Rev. Nucl. Part. Sci. 53 (2003) 77.  $n_{\nu_i}^{C\nu B} \sim 10^{-12} \text{ eV}^3 \text{ and } n_e = 10^9 - 10^{11} \text{ eV}^3$ 

General form of  $M_i$   $M_i = \frac{\lambda_{\nu_i}}{m_{\phi}^2} \left[ \lambda_e n_e + \sum_i \lambda_{\nu_i} \left( n_{\nu_i}^{C\nu B} + \frac{m_{\nu_i}}{E_{\nu_i}} n_{\nu_i}^{\text{rel}} \right) \right]$   $m_{\phi}^2 < 4 \cdot 10^{-8} \text{ eV}^2 \text{ and } \lambda_e < 0.01 \, m_N / M_{\text{Pl}} \sim 10^{-21}$ E. G. Adelberger, et al., Ann. Rev. Nucl. Part. Sci. 53 (2003) 77.  $n_{\nu_i}^{C\nu B} \sim 10^{-12} \text{ eV}^3 \text{ and } n_e = 10^9 - 10^{11} \text{ eV}^3$ For pp neutrinos inside the Sun  $\frac{m_{\nu_i}}{E_{\nu_i}} n_{\nu_i}^{\text{rel}} \ll \frac{1 \text{ eV}}{0.3 \text{ MeV}} 7 \cdot 10^{-8} \text{ eV}^3 = 2.3 \cdot 10^{-13} \text{ eV}^3$ 

General form of  $M_i$  $M_i = \frac{\lambda_{\nu_i}}{m_{\star}^2} \left[ \lambda_e n_e + \sum_i \lambda_{\nu_i} \left( n_{\nu_i}^{C\nu B} + \frac{m_{\nu_i}}{E_{\nu_i}} n_{\nu_i}^{\text{rel}} \right) \right]$  $m_{\phi}^2 < 4 \cdot 10^{-8} \,\mathrm{eV}^2$  and  $\lambda_e < 0.01 \, m_{\mathrm{N}} / M_{\mathrm{Pl}} \sim 10^{-21}$ E. G. Adelberger, et al., Ann. Rev. Nucl. Part. Sci. 53 (2003) 77.  $n_{\nu_e}^{C\nu B} \sim 10^{-12} \,\mathrm{eV}^3$  and  $n_e = 10^9 - 10^{11} \,\mathrm{eV}^3$ For pp neutrinos inside the Sun  $\frac{m_{\nu_i}}{E_{\nu_i}} n_{\nu_i}^{\text{rel}} \ll \frac{1 \,\text{eV}}{0.3 \,\text{MeV}} 7 \cdot 10^{-8} \,\text{eV}^3 = 2.3 \cdot 10^{-13} \,\text{eV}^3$ 

$$M_{i} = \frac{\lambda_{\nu_{i}}}{m_{\phi}^{2}} \left( \mathcal{O}(10^{-12} - 10^{-10}) + \lambda_{\nu_{i}} \mathcal{O}(10^{-12}) \right) \text{ [eV]}$$

General form of  $M_i$  $M_i = \frac{\lambda_{\nu_i}}{m_{\star}^2} \left[ \lambda_e n_e + \sum_i \lambda_{\nu_i} \left( n_{\nu_i}^{C\nu B} + \frac{m_{\nu_i}}{E_{\nu_i}} n_{\nu_i}^{\text{rel}} \right) \right]$  $m_{\phi}^2 < 4 \cdot 10^{-8} \,\mathrm{eV}^2$  and  $\lambda_e < 0.01 \, m_{\mathrm{N}}/M_{\mathrm{Pl}} \sim 10^{-21}$ E. G. Adelberger, et al., Ann. Rev. Nucl. Part. Sci. 53 (2003) 77.  $n_{\nu}^{C\nu B} \sim 10^{-12} \,\mathrm{eV}^3$  and  $n_e = 10^9 - 10^{11} \,\mathrm{eV}^3$ For pp neutrinos inside the Sun  $\frac{m_{\nu_i}}{E_{\nu_i}} n_{\nu_i}^{\text{rel}} \ll \frac{1 \,\text{eV}}{0.3 \,\text{MeV}} 7 \cdot 10^{-8} \,\text{eV}^3 = 2.3 \cdot 10^{-13} \,\text{eV}^3$  $M_{i} = \frac{\lambda_{\nu_{i}}}{m_{\phi}^{2}} \left( \mathcal{O}(10^{-12} - 10^{-10}) + \lambda_{\nu_{i}} \mathcal{O}(10^{-12}) \right) \text{ [eV]}$ 

e.g.  $\lambda_{\nu_i} \sim 10^{-3}$  and  $m_{\phi}^2 \sim 10^{-11} \,\mathrm{eV}^2$  gives  $M_i \sim 10^{-4} - 10^{-2} \,\mathrm{eV}$ 

We use following simplifications

$$m_1 = 0, \ M_1 = 0$$

and we assume as density dependence for the  $M_i$ 

$$M_i(r) = \mu_i \cdot \left(\frac{n_e(r)}{n_e^0}\right)^k$$

where  $\mu_i$  and k are free parameters

Can MVN replace oscillations?

#### Can MVN replace oscillations?



#### Can MVN replace oscillations?



Matching at  $\rho$  of K2K:

 $ho_0 = 2.8 \,\mathrm{g \, cm^{-3}}, \quad \Delta m^2 = 2.4 \cdot 10^{-3} \,\mathrm{eV^2} \quad \theta = \pi/4$  yields a solution with

$$k = 2$$
,  $M_3(\rho_0) = 0.034 \,\mathrm{eV}$ ,  $M_2 = 0$ 

#### Can MVN replace oscillations?





 $\rho_0 = 2.8 \,\mathrm{g \, cm^{-3}}, \quad \Delta m^2 = 2.4 \cdot 10^{-3} \,\mathrm{eV^2} \quad \theta = \pi/4$  yields a solution with

k = 2,  $M_3(\rho_0) = 0.034 \,\mathrm{eV}$ ,  $M_2 = 0$ 

different values for k are equally possible

# **Atmospheric neutrinos** $P_{\mu\mu}$ as a function of $\cos \theta_z$ and $E_{\nu}$



red corresponds to 1 and turquoise to 0



Differences are large, but size of observable effects depends on resolution!



partially contained events

- 'Mickey Mouse' event calculation
- much more thorough calculation is needed

#### L/E-dependence



only probabilities
smearing in L/E of 65%



 $n_e(r) \propto \exp(-r/r_c)$  is the propagation inside the Sun still adiabatic?

 $n_e(r) \propto \exp(-r/r_c)$ is the propagation inside the Sun still adiabatic?

$$Q(r) = \frac{\Delta(r)}{4E|\dot{\theta}(r)|}$$

Adiabatic propagation  $\Leftrightarrow Q \gg 1 \,\forall r$ 

 $n_e(r) \propto \exp(-r/r_c)$ is the propagation inside the Sun still adiabatic?

$$Q(r) = \frac{\Delta(r)}{4E|\dot{\theta}(r)|}$$

Adiabatic propagation  $\Leftrightarrow Q \gg 1 \,\forall r$ 

 $\Rightarrow$  Determine  $Q_{\min}$  for each energy

 $n_e(r) \propto \exp(-r/r_c)$ is the propagation inside the Sun still adiabatic?

$$Q(r) = \frac{\Delta(r)}{4E|\dot{\theta}(r)|}$$

Adiabatic propagation  $\Leftrightarrow Q \gg 1 \forall r$ 

 $\Rightarrow$  Determine  $Q_{\min}$  for each energy

For the oscillation part the parameters are

 $\Delta m^2 = 7.9 \cdot 10^{-5} \,\mathrm{eV}^2, \quad \tan^2 \theta = 0.38$ 



Q = 0 for one certain energy!  $\Rightarrow$  numerics fails around this energy



Q = 0 for one certain energy!  $\Rightarrow$  numerics fails around this energy

Everywhere else  $Q \gg 1 \Rightarrow$  adiabatic approximation

$$P = \frac{1}{2} + \frac{1}{2}\cos 2\theta_m^0 \cos 2\theta$$



Q = 0 for one certain energy!  $\Rightarrow$  numerics fails around this energy

Everywhere else  $Q \gg 1 \Rightarrow$  adiabatic approximation

$$P = \frac{1}{2} + \frac{1}{2}\cos 2\theta_m^0 \cos 2\theta$$

$$\tan 2\theta_m^0 = \frac{(m_2 - \mu_2)^2 \sin 2\theta + 2\mu_3^2 \cos 2\theta}{(m_2 - \mu_2)^2 \cos 2\theta - 2\mu_3^2 \sin 2\theta - A^0}$$



Q = 0 for one certain energy!  $\Rightarrow$  numerics fails around this energy

Everywhere else  $Q \gg 1 \Rightarrow$  adiabatic approximation

$$P = \frac{1}{2} + \frac{1}{2}\cos 2\theta_m^0 \cos 2\theta$$

$$\tan 2\theta_m^0 = \frac{(m_2 - \mu_2)^2 \sin 2\theta + 2\mu_3^2 \cos 2\theta}{(m_2 - \mu_2)^2 \cos 2\theta - 2\mu_3^2 \sin 2\theta - A^0}$$

which is independent of k!



$$Q = 0 \Leftrightarrow \dot{\theta}(r) \to \infty$$

this happens if both the numerator and denominator of  $\tan 2\theta_m$  become zero for the same value of r



pure MVN fit not possible *k*-independent
excellent 'fit'
flat SK spectrum

Is this in accordance with the KamLAND result?



 $L = 180 \,\mathrm{km}$  $\Delta P = P_{\bar{e}\bar{e}}^{\mathrm{OSC}} - P_{\bar{e}\bar{e}}^{\mathrm{MVN}}$  $\delta E = 7.3\% / \sqrt{E(\mathrm{MeV})}$ 

k-dependence

$$\Delta P \propto \left(\frac{\rho_{\text{KamLAND}}}{\rho_{\text{Sun}}^0}\right)^k \simeq 0.015^k$$

### **Solar neutrinos** Are Day-Night effects okay?



 $\begin{aligned} \cos\theta_z &= -1 \\ \Delta P = P_{ee}^{\text{OSC}} - P_{ee}^{\text{MVN}} \\ \delta E &= 10\% \end{aligned}$ 

Would a MVN contribution of the same size be okay in atmospheric neutrinos?



 $cos \theta_z = -1$   $\Delta P = P_{\mu\mu}^{\text{OSC}} - P_{\mu\mu}^{\text{MVN}}$  $\delta E = 10\%$ 

• a sizeable contribution of MVN seems to be allowed

- a sizeable contribution of MVN seems to be allowed
- atmospheric  $\nu$ 's: density dependence determines the size of effects

- a sizeable contribution of MVN seems to be allowed
- atmospheric  $\nu$ 's: density dependence determines the size of effects
- solar  $\nu$ 's: density dependence has much smaller effect

- a sizeable contribution of MVN seems to be allowed
- atmospheric  $\nu$ 's: density dependence determines the size of effects
- solar  $\nu$ 's: density dependence has much smaller effect
- the quality of the solar fit can be improved by MVN

- a sizeable contribution of MVN seems to be allowed
- atmospheric  $\nu$ 's: density dependence determines the size of effects
- solar  $\nu$ 's: density dependence has much smaller effect
- the quality of the solar fit can be improved by MVN
- testable predictions

- a sizeable contribution of MVN seems to be allowed
- atmospheric  $\nu$ 's: density dependence determines the size of effects
- solar  $\nu$ 's: density dependence has much smaller effect
- the quality of the solar fit can be improved by MVN
- testable predictions

MVN have a rich phenomenology – but more precise calculations are needed