Present and Future of Super-K and LBLE in Japan

Y. Suzuki Kamioka Observatory ICRR, University of Tokyo

> 2005.02.23 Neutrino Telescope @Venice

# of ID PMTs	11,146	5,182	11,146
Photo-coverage	40%	19%	40%
Cherenkov light yield	~6 p.e./MeV	~2.8 p.e./MeV	~6 p.e./MeV
Energy threshold	5 MeV	8 MeV	4 MeV
		Acrylic(13cm) + FRP	cases

2004.02.23

Longer term commission and LBLE

	K2K	T2K-I
Machine Energy	12GeV	40GeV
Machine Power	0.0052 MW	0.75 MW
Beam Intensity	6x10 ¹² ppp	330x10 ¹² ppp
Repetition Rate	0.45	0.275
Mean v energy	1.4 GeV	0.7GeV
Aiming POT's	10 ²⁰ POT	5x10 ²¹ POT
Total events	~150(~100obs.)	11000

Wider Range View for Water Cherenkov Detectors

	U						
80's	90's		00's	10's		20's	30's
A few thous	sand	<u>50,</u>	<u>000 tons</u>		Meg	<u>ja ton d</u>	etectors
tons		Sup	ber-K		Buter Betector Jamer Betector Access Britt	That form Owner Sheet Uner Tater Parification for	
Kamiokand	e, IMB				Parte detectars		
		8-0				SECTION Management Managemen	n (CASSUpert) 6.000
		Neut	rino Oscill	ations	Neut	rino Os	cillation
Supernova	ν	Atı	m-v and So	olar-v	θ ₁₃	, CPV (?	') (0)
Δtm_{-v} anon	nalv	ma	an-made v		Supe	ernova v	· (?)
		θ ₂₃ , Δ	\ m²₂₃, θ₁₂, Δ	\m ² ₁₂	Supe	ernova F	Relic v (?)
Solar-v Pro	blem	θ ₁₃ (?	')		Prote	on deca	y (?)
		Supe	ernova v (?)			
	l			-		i. Nakaya	a's taik

Y.Suzuki (NeutrinoTelescope2005 @Venice)

2004.02.23

Search for τ appearance

- τ events cannot be identified by event by-event basis
 - Many Hadrons
- Need statistical analysis
 - characteristics of τ
 production
- Low rate
 - 1 CC ν_τ FC ev /kton/yr
- BG ~ 130 ev /kton/yr

Selection and Variables

2004.02.23

Y.Suzuki (NeutrinoTelescope2005 @Venice)

7

Event reductions

	Atm v MC(100yr) (no osci.)	τ CC MC(200yr) (w/ osci.)
Generated events Fiducial vol. & Evis >1.33 Most energetic = e	482760 (100%) 81950 (17%) 43616 (9%) 16234 (34 %)	3891(100%) 2504(64%) 2249(58%) 1650(42 %)

Tau Results

Result of L/E analysis

- The first dip has been observed at ~500km/GeV
- This provide a strong confirmation of neutrino oscillation
- The first dip observed cannot be explained by other hypotheses

Y.Suzuki (NeutrinoTelescope20

11

Constraint on the neutrino oscillation parameters from L/E analysis

Stronger constraint on Δm^2 even with fewer events

Three flavor analysis

Oscillation effects in electron appearance

Order estimate of the effect of Solar term and $\sin\theta_{13}$

 $\sin^2\theta_{23}=0.5$: case for $\sin^2\theta_{23}\neq 0.5$ will be discussed later

Search for non-zero θ_{13} in SK data

Assumption in SK analysis

Normal:

matter effect for neutrinos Inverted:

 $_{2}$ matter effect for anti-v

Expected electron appearance
 In 2~10 GeV up-going events
 due to matter effects

Normal vs Inverse hierarchy

Effect of solar term to determine θ_{23}

- Effect of solar term should appear in the low energy data even if $\sin^2\theta_{13}=0$ (no interference)
- The effect is very small for $\cos^2\theta_{23}=0.5$ due to the cancellation effect ($v_{\mu}/v_e=2$).

$$\begin{split} \frac{\Psi(\nu_e)}{\Psi_0(\nu_e)} - 1 &\cong P_2(r \cdot \cos^2 \theta_{23} - 1) \quad \text{; In low energy r ~ 2} \\ &\sim 0 \quad \text{for } \cos^2 \theta_{23} = 0.5 \\ &< 0 \quad \text{for } \cos^2 \theta_{23} < 0.5 \\ &> 0 \quad \text{for } \cos^2 \theta_{23} > 0.5 \end{split}$$

However because of the cancellation effect, it is possible to determine the deviation from maximal θ_{23} and octant of θ_{23}

Results for the effect of the solar term

Future Possibility

- Full SK detector MC and SK reconstruction tools.
- Assuming 20 yrs of SK (or 80yrs of SK = 2 yrs of 1Mt)
- Fixed Parameters
 - $-\Delta m^{2}_{23} = 2.5 \times 10^{-3} eV^{2}$ (positive)
 - Δm^{2} 12 = 8.3x10⁻⁵eV²
 - $-\sin^2 2\theta_{12} = 0.825$
- 3 parameters in simulation
 - $-\sin^2\theta_{23} = 0.40, 0.45, 0.50, 0.55, 0.60$
 - $\sin^2\theta_{13} = 0.04, \, 0.02, \, 0.006, \, 0.00$
 - $\delta_{CP} = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$

Discrimination of the θ_{23} octant

 $sin^2\theta_{23} = 0.40 \text{ or } 0.60 (sin^22\theta_{23}=0.96)$: Possible for larger $sin^2\theta_{13}$ for SK 20 yrs $sin^2\theta_{23} = 0.45 \text{ or } 0.55 (sin^22\theta_{23}=0.99)$: Difficult for SK 20 yrs

2004.02.23

80yrs SK ~ 2yrs 1 mega-ton(fid)

 $s^{2}2\theta_{12}=0.825$ $s^{2}\theta_{23}=0.40 \sim 0.60$ $s^{2}\theta_{13}=0.00\sim0.04$ $\delta cp=45^{\circ}$ $\Delta m^{2}{}_{12}=8.3x10^{-5}$ $\Delta m^{2}{}_{23}=2.5x10^{-3}$

With 80yrs SK, discrimination is possible for many parameter combinations

2004.02.23

Non-zero θ_{13}

CP phase (2yrs of 1 Mega ton detector)

CP phase could be seen if θ_{13} is close to the CHOOZ limit.

K2K summary

 8.9x10¹⁹ P.O.T. Observed: 107 events Expected: 150.9 +11.5 (+7.7%) -10.1 (-6.7%)

Best fit: sin²2θ=1.51: ∆m²=2.19x10⁻³eV² Best in physical resion sin²2θ=1.00: ∆m²=2.79x10⁻³eV² Allowed region of $\Delta m^2 @ \sin^2 2\theta = 1$ 1.9 ~ 3.6 x10⁻³ eV² (90%) **Null Oscillation Probability** number of events 0.26% Spectrum 0.74% Combined 0.005% (4.0σ)

Confirmation of the oscillation Consistent with the Atm-v oscillation

Long baseline neutrino oscillation experiment from Tokai to Kamioka (T2K) (~100xK2K)

2004.02.23

Y.Suzuki (NeutrinoTelescope2005 @Venice)

To S

2004.02.23

Y.Suzuki (NeutrinoTelescope2005 @Venice)

Accuracy of θ_{23} , Δm_{23}

Both statistical (5yr operation) and expected systematic errors

Normalization	5%
nonQE/QE	5%
E scale	1%
Spectrum shape	20%
Spectrum width	5%

Current Accuracy from Atm- ν $\delta(\Delta m_{23}^2) \sim 1x10^{-3} eV^2$ $\delta(sin^22\theta_{23}) \sim 0.1$

Sensitivity to θ_{13}

Signal: Single-R e-like (CC QE events) BG: beam contained v_e Mis-reconstructed π⁰

Selections:

- Single R elike, Evis > 100 MeV
- No decay-e
- E_v^{rec} =0.35 ~ 0.85 GeV
- cosθ_{ve} <0.9
- π^{o} -filter

Solar LMA solutions

⁸B spectrum measurement \rightarrow low energy upturn (depends on θ_{12})

Solar LMA solutions

effect of different ∆m² → small difference in the upturn

2004.02.23

Sensitivity of the spectrum for Mton detector

Mass Variable Neutrinos?

- Is Neutrino oscillation sensitive to the density dependent neutrino mass?
- Quick & dirty check:
 - No mass in vacuum
 - Finite mass in matter

(no density dependence)

 Horizontal direction has most path in vacuum (air)

Zenith angle distribution of neutrinos

Zenith angle distribution of muons

 $0.5 < E_{V} < 1.5 \text{ GeV}$

1.5 < Ev < 3.0 GeV

Discrimination may be possible → Wait for a real analysis based on SK data

2004.02.23