Mauro Mezzetto, Istituto Nazionale di Fisica Nucleare, Sezione di Padova

# " European Neutrino Programmes, Accelerator and Reactor based "

- Introduction
- Double Chooz (thanks to T. Lasserre)
- Super Beams
- Beta Beams
- Neutrino Factories

A bottom-up perspective.

Introduction

# Introduction

Near future neutrino oscillations experiments: T2K, Double Chooz (No $\nu$ a, Daya Bay), will not be enough to exhaust neutrino oscillations searches: they will be unable to unambiguously measure mass hierarchy and leptonic CP violation, whatever value of  $\theta_{13}$ .

A new generation of neutrino oscillation experiments will be needed. It could be based again on conventional neutrino beams (SuperBeams) or on neutrino beams of new concept: Beta Beams and/or Neutrino Factories.

Europe it could be the site of next to next generation experiments.

# Introduction

Near future neutrino oscillations experiments: T2K, Double Chooz (No $\nu$ a, Daya Bay), will not be enough to exhaust neutrino oscillations searches: they will be unable to unambiguously measure mass hierarchy and leptonic CP violation, whatever value of  $\theta_{13}$ .

A new generation of neutrino oscillation experiments will be needed. It could be based again on conventional neutrino beams (SuperBeams) or on neutrino beams of new concept: Beta Beams and/or Neutrino Factories.

Europe it could be the site of next to next generation experiments.

A list of frequently asked questions:

- Shouldn't we wait to know  $\theta_{13}$  before proposing these facilities?
- Is it possible to design an optimal facility for a simultaneous measure of  $\theta_{13}$ ,  $\delta_{\rm CP}$  and  ${\rm sign}(\Delta m^2)$ ?
- Is it possible to design an optimal facility for leptonic CP violation searches regardless of the value of  $\theta_{13}$ ?
- Do we have a clear picture of the R&D, timescales, costs and performances of the proposed new facilities?
- Is it Europe big and coherent enough to propose one of the new facilities?

# Most of the neutrino oscillation parameters are waiting to be measured



# Sub leading $u_{\mu} - u_{e}$ oscillations



 $heta_{13}$  discovery requires total probability ( $\propto \sin^2 2\theta_{13}$ ) greater than solar driven probability

Leptonic CP discovery requires  $A_{CP} = \frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})} \neq 0$ 





# $\nu_e - \nu_e$ oscillations

 $1 - P_{\bar{e}\bar{e}} \simeq \sin^2 2\theta_{13} \sin^2(\Delta m_{31}^2 L/4E) + (\Delta m_{21}^2/\Delta m_{31}^2)^2) (\Delta m_{31}^2 L/4E)^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}$ 

- Much simpler connection between  $P_{\overline{e}\overline{e}}$  and  $\theta_{13}$ , no interference with  $\delta_{\rm CP}$  and  ${\rm sign}(\Delta m^2)$ .
- No way to directly measure leptonic CP violation and mass hierarchy.
- Truly complementary to the accelerator experiments.
- Disappearance experiments: systematic errors dominate over statistics.



### Double Chooz FAR-Near difference in 5 years, from hep-ex/0606025



# **Double Chooz**



### 2 cores – 1 site – 8.5 GW<sub>th</sub>

### 1 near position, 1 far

- target: 2 x 8.3 t Civil engineering

# - 1 near lab ~ Depth 40 m, $\emptyset$ 6 m

- 1 available lab

### Statistics (including ε)

- far: ~ 40 evts/day
- near: ~ 460 evts/day

### **Systematics**

- reactor : ~ 0.2%
- detector : ~ 0.5%

### Backgrounds

- $\sigma_{_{b2b}}$  at far site: ~ 1%
- $\sigma_{_{b2b}}$  at near site: ~ 0.5%

### Planning

- 1. Far detector only
  - <u>2008-2009</u>
- Sensitivity (1.5 ans) ~ <u>0.06</u>
- 2. Far + Near sites
  - available from 2010
  - Sensitivity (3 years) ~ 0.025

## **Evolution of the Double Chooz sensitivity**



# Status after the first and second generation: $\theta_{13}$

See also T. Schwetz talk.



**T2K:** Start in 2009, latest default beam power curve. NO $\nu$ A: Start in 2011, 20 kton,  $6 \cdot 10^{20}$  pot/yr

# Status after the first and second generation: $\delta_{ m CP}$

#### No hope to see any CP signal at $3\sigma$

-0.5

-1

۰0

0.05

From P. Huber, M. Lindner, M. Rolinec, T. Schwetz and W. Winter,



0.15

0.1

 $\sin^2 2\theta_{13}$ 



(dotted lines:  $3\sigma$ , solid are 90%CL)

0.20

To address leptonic CP violation: improve of at least one order of magnitude the sensitivity of  $\sin^2 2\theta_{13}$ ; two order of magnitudes more neutrinos !!!

0.15

0.05

0.1

 $\sin^2 2\theta_{13}$ 

# The SuperBeam way

## Proposals based on upgrades of existing facilities:

- T2K  $\Rightarrow$  T2HK or T2KK (T. Kajita talk)
- No $\nu$ a  $\Rightarrow$  Super No $\nu$ a (K. Lang talk)
- CNGS  $\Rightarrow$  off-axis CNGS fired on a gigantic liquid argon detector
- AGS Brookhaven ⇒ wide band beam fired on a gigantic water Cerenkov detector.

### **Proposals based on new facilities**

CERN-SPL SuperBeam

# SuperBeams - J-PARC phase 2 (T2HK)

Upgrade the proton driver from 0.75 MW to 4 MW Upgrade SuperKamiokande by a

factor  $\sim 20 \Longrightarrow$  HyperKamiokande Both upgrades are necessary to address leptonic CP searches.

The detector would have valuable physics potential in proton decay, SN neutrinos, solar neutrinos. Its cost:  $\sim 0.5$  G\$ Systematics at 2% are difficult 4 MW at 50 GeV/c are difficult Targetry and optics at 4 MW are difficult and will probably require some compromise

T. Kobayashi, J.Phys.G29:1493(2003)



# **Off-Axis CNGS**

### A. Meregaglia and A. Rubbia, JHEP 0611 (2006) 032

- Have 8 times more pot/yr than CNGS. Possibly design a new optics to lower CNGS neutrino energy to about 10 GeV.
- Dig a new cavern, shallow depth, in an appropriate off-axis location close to the LNGS (L=850 km,  $0.75^{\circ}$  or L=1050 km,  $1.5^{\circ}$ )
- Install a 100 kton, monolithic liquid argon detector.
- In case build two detectors: 30 kton at 850 km and 70 kton at 1050 km.
- Final sensitivities similar to T2HK.

The ICARUS collaboration is going to make public a Lol for a large mass liquid argon detector at the LNGS.



# **Off-Axis CNGS**

### A. Meregaglia and A. Rubbia, JHEP 0611 (2006) 032

- Have 8 times more pot/yr than CNGS. Possibly design a new optics to lower CNGS neutrino energy to about 10 GeV.
- Dig a new cavern, shallow depth, in an appropriate off-axis location close to the LNGS (L=850 km,  $0.75^{\circ}$  or L=1050 km,  $1.5^{\circ}$ )
- Install a 100 kton, monolithic liquid argon detector.
- In case build two detectors: 30 kton at 850 km and 70 kton at 1050 km.
- Final sensitivities similar to T2HK.

The ICARUS collaboration is going to make public a Lol for a large mass liquid argon detector at the LNGS.

- CNGS θ13 Discovery 90% C.L. 3σ C.L. B 350 300 (v+anti v) run free parameters anti v run only 250 200 v run only (v+anti v) run no systematics 150 100 (v+anti v) run ixed parameters 50 0-10-4 10-3 10-2 10 sin2 (2013) CNGS - 850km - Mass hierarchy exclusion 90% C.L 30CL <mark>රි</mark> 350 (v+anti v) run anti v run only 300 no systematics (v+anti v) run 250 (v+anti v) run ree parameters fixed para 200 150 100 v run only 50 0 10-3 10-2 10<sup>-1</sup> sin<sup>2</sup> (20, 1)
- Is it possible to upgrade the CNGS pot/yr by one order of magnitude? With which costs and timescale? Alternatively, what upgrades of the CNGS intensity can be foreseen in the next years? CERN is going to release a document to this purpose.
- How big a liquid argon module can be built? With which costs and timescale?
- For the cavern(s) see E. Coccia's talk next friday.

## SuperBeams - SPL $\nu$ beam at CERN



- A 3.5 GeV, 4MW Linac: the SPL.
- A liquid mercury target station capable to manage the 4 MW proton beam. R&D required.
- A conventional neutrino beam optics capable to survive to the beam power, the radiation and the mercury. Already prototyped.
- Up to here is the first stage of a neutrino factory complex.
- A sophisticated close detector to measure at 2% signal and backgrounds.
- A megaton class detector under the Frejus, L=130 km: Memphys.

# The Memphys detector (hep-ex/0607026)



In the middle of the Frejus tunnel at a depth of 4800 m.w.e a preliminary investigation shows the feasibility to excavate up to five shafts of about 250,000 m<sup>3</sup> each  $(\Phi = 65 m$ , full height=80 m).

Fiducial of 3 shafts: 440 kton.

30% coverage by using 12" PMT's from Photonis, 81k per shaft (with the same photostatistics of SuperKamiokande with 40% coverage)

# Laguna

A coordinated European effort aimed towards conceptual designs for European large underground detectors.Physics focus: proton decay, low energy neutrino astronomy, long baseline neutrino beam. Three detection techniques are currently investigated:

- Water Cerenkov imaging,  $\sim 500$  kton, with synergy with HK (Japan) and UNO (USA).
- Liquid argon time-projection chamber,  $\sim 100$  kton. Technology pioneered in Europe by the ICARUS R&D programme.
- $\bullet$  Liquid scintillator,  $\sim 50~\rm kton$  connected to Borexino R&D programme

Feasibility studies for site excavation are mandatory to build the required infrastructure ho host these very large detectors, also under contrilled cost boundaries.

A request to a European FP7 Design Study is going to be finalized. M. Mezzetto, "European Neutrino Programmes, Accelerator and Reactor based", "Neutrino Telescopes 2007", Venice, March 6-9 2007.







# The merits of the "short baselines"

- Absolutely negligible matter effects: the cleanest possible environment for direct leptonic CP violation and  $\theta_{13}$  searches.
- Almost all the events are quasi elastics: very reduced problems from the QE-not QE ratios.
- Energy shape it's not a problem, a reasonable binning can be achieved (see later slides).
- In principle the same energy of a SPS based beta beam. The two beams could be fired to the same detector.

### On the other hand

- Mass hierarchy cannot be directly measured. A not trivial sensitivity on  $\operatorname{sign}(\Delta m^2)$  can however been recovered combining accelerator neutrino signals with the atmospherics' (see later slides).
- Small cross sections, loosely known and with important influence of nuclear effects.

# Conventional neutrino beams are going to hit their ultimate limitations.



In a **conventional neutrino beam**, neutrinos are produced SECONDARY particle decays (mostly pions and kaons). Given the short life time of the pions  $(2.6 \cdot 10^{-8} \text{s})$ , they can only be focused (and charge selected) by means of magnetic horns. Then they are let to decay in a decay tunnel, short enough to prevent most of the muon decays.

- Besides the main component ( $\nu_{\mu}$ ) at least 3 other neutrino flavors are present ( $\overline{\nu}_{\mu}$ ,  $\nu_{e}$ ,  $\overline{\nu}_{e}$ ), generated by wrong sign pions, kaons and muon decays.  $\nu_{e}$  contamination is a background for  $\theta_{13}$  and  $\delta$ ,  $\overline{\nu}_{\mu}$  contamination dilutes any CP asymmetry.
- Hard to predict the details of the neutrino beam starting from the primary proton beam, the problems being on the secondary particle production side.
- Difficult to tune the energy of the beam in case of ongoing optimizations.

# All these limitations are overcome if secondary particles become primary

Collect, focus and accelerate the neutrino parents at a given energy. This is impossible within the pion lifetime, but can be tempted within the muon lifetime (**Neutrino Factories**) or within some radioactive ion lifetime (**Beta Beams**):

- Just one flavor in the beam
- Energy shape defined by just two parameters: the endpoint energy of the beta decay and the  $\gamma$  of the parent ion.
- Flux normalization given by the number of ions circulating in the decay ring.
- Beam divergence given by  $\gamma$ .

# The full <sup>6</sup>He flux MonteCarlo code

```
Function Flux(E)
Data Endp/3.5078/
Data Decays /2.9E18/
ve=me/EndP
c ... For ge(ye) see hep-ph0312068
qe=0.0300615
2qE0=2*qamma*EndP
       Kinematical Limits
   (E.gt.(1-ye) * 2qE0) THEN
   Flux=0.
   Return
Endif
c ... Here is the Flux
Flux=Decays*gamma**2/(pi*L**2*ge)*(E**2*(2gE0-E))/
+ 2qE0**4*Sqrt((1-E/2qE0)**2-ye**2)
Return
```



• 1 ISOL target to produce He<sup>6</sup>, 100  $\mu A$ ,  $\Rightarrow 2.9 \cdot 10^{18}$  ion decays/straight session/year.  $\Rightarrow \overline{\nu}_e$ .

- 3 ISOL targets to produce Ne<sup>18</sup>, 100  $\mu A$ ,  $\Rightarrow 1.1 \cdot 10^{18}$  ion decays/straight session/year.  $\Rightarrow \nu_e$ .
- These fluxes apply if the two ions are run separately

# **Exciting new ideas about radioactive ion production**

### C. Rubbia et al., hep-ph/0602032

C. Rubbia hep-ph/0609235



- It could deliver up to two order of magnitudes more radioactive ions than the Eurisol targets.
- <sup>8</sup>B and <sup>8</sup>Li have a Q factor about 8 times larger than <sup>6</sup>He and <sup>18</sup>Ne, allowing higher neutrino energies for the same  $\gamma$  value (on the other hand for the same neutrino energy the relative flux is lower by  $1/\gamma$  due to the smaller Lorenz boost.)
- They have a more favorable Z/A factor, allowing for higher γ at the same accelerator.
- If realistic, this production method could bring to a completely different Beta Beam optimization scheme.

# The pion background: a potential Beta Beam killer?



Momentum (MeV/c)

#### 21

# The pion background (cont.)



| latio | n siar | nals |
|-------|--------|------|
| Iauvi | JUSI   | ICIS |

From J.E.Campagne, M. Maltoni, M.M., T.Schwetz, hep-ph/0603172.

|                                 | βВ                |                       | S                 | PL                    | T2HK              |                       |  |
|---------------------------------|-------------------|-----------------------|-------------------|-----------------------|-------------------|-----------------------|--|
|                                 | $\delta_{CP} = 0$ | $\delta_{CP} = \pi/2$ | $\delta_{CP} = 0$ | $\delta_{CP} = \pi/2$ | $\delta_{CP} = 0$ | $\delta_{CP} = \pi/2$ |  |
| appearance v                    |                   |                       |                   |                       |                   |                       |  |
| background                      | 143               |                       | 6                 | 600                   | 1017              |                       |  |
| $\sin^2 2\theta_{13} = 0$       |                   | 25                    |                   | 41                    | 84                |                       |  |
| $\sin^2 2\theta_{13} = 10^{-3}$ | 72                | 81                    | 93                | 10                    | 181               | 18                    |  |
| $\sin^2 2\theta_{13} = 10^{-2}$ | 310               | 339                   | 387               | 126                   | 754               | 240                   |  |
| appearance $\overline{v}$       |                   |                       |                   |                       |                   |                       |  |
| background                      | 157               |                       | 500               |                       | 1428              |                       |  |
| $\sin^2 2\theta_{13} = 0$       |                   | 30                    |                   | 36                    |                   | 90                    |  |
| $\sin^2 2\theta_{13} = 10^{-3}$ | 82                | 12                    | 74                | 104                   | 188               | 261                   |  |
| $\sin^2 2\theta_{13} = 10^{-2}$ | 346               | 125                   | 297               | 390                   | 746               | 977                   |  |

Computed with  $\Delta m_{31}^2 = +2.4 \times 10^{-3} \text{ eV}^2$ ,  $\sin^2 \theta_{23} = 0.5$ ,  $\Delta m_{21}^2 = 7.9 \times 10^{-5} \text{ eV}^2$ ,  $\sin^2 \theta_{12} = 0.3$ . with an accuracy of 10% for  $\theta_{12}$ ,  $\theta_{23}$ ,  $\Delta m_{31}^2$ , and 4% for  $\Delta m_{21}^2$  at  $1\sigma$ .



Line width: 2% and 5% systematic errors.



M. Mezzetto, "European Neutrino Programmes, Accelerator and Reactor based", "Neutrino Telescopes 2007", Venice, March 6-9 2007.

## The degeneracy problem

δср The sub-leading  $u_{\mu} \rightarrow 
u_{e}$  formula leaves room for clone solutions of the fit to  $heta_{13}$  and  $\delta_{\mathrm{CP}}$  . The eightfold degeneracies arise from

- $\operatorname{sign}(\Delta m^2)$  . Changing  $\operatorname{sign}(\Delta m^2)$  the  $P(
  u_{\mu} \rightarrow$  $u_e)$ terms  $\propto \sin(\Delta m^2_{23})$  change sign. Two separate solutions can be created by  $(\theta_{13}, \delta_{\rm CP}, {\rm sign}(\Delta m^2))$  and by  $(\theta_{13}', \delta_{\rm CP}', -{\rm sign}(\Delta m^2)).$
- $\pi/2 heta_{23}$  (octant) .  $u_{\mu}$  disappearance measures  $\sin^2 2 heta_{23}$ but some terms in the oscillation formula depend from  $\sin \theta_{23}$  .At present the experimental best fit is  $\sin^2 2\theta_{23} = 1$ allowing no ambiguity, but the experimental not excluded values smaller than unity allow for a twofold  $\pi/2 - \theta_{23}$  ambiguity.
  - 90 -180 0





These eightfold discrete degeneracies (or twofold in case  $\sin^2 2\theta_{23} \simeq 1$ ) can be solved by combining information of different experiments running at different energies or looking to different processes (i.e. combining  $\nu_{\mu} \rightarrow \nu_{e}$  transitions with  $\nu_{e}$  disappearance or with  $\nu_{e} \rightarrow \nu_{\tau}$  transitions). A single experiment cannot solve all these degeneracies by itself.

180

90

0

# The synergy with atmospheric neutrinos

**P. Huber et al., hep-ph/0501037**: Combining Long Baseline data with atmospheric neutrinos (that come for free in the megaton detector):

- Degeneracies can be canceled, allowing for better performances in  $\theta_{13}$  and LCPV searches
- The neutrino mass hierarchy can be measured
- The  $\theta_{23}$  octant can be determined.

The main reasons are:

- Octant e-like events in the Sub-GeV data is  $\propto \cos^2 heta_{23}$
- **Sign** e-like events in the Multi-GeV data, thanks to matter effects, especially for zenith angles corresponding to neutrino trajectories crossing the mantle and core where a resonantly enhancement occurs.

**NOTE:** LBL and atmospherics are a true synergy. They add to each other much more that a simple gain in statistics. Atmospherics alone could not measure the hierarchy, the octant,  $\theta_{13}$  and LCPV. While the Beta Beam at short baselines could not measure the hierarchy as well as the octant.

In the following sensitivities of the Beta Beam combined with the atmospherics are taken from J.E.Campagne, M.Maltoni, M.M., T.Schwetz, hep-ph/0603172





## Beta Beam plus atmospherics: determining mass hierarchy and the octant

M. Mezzetto, "European Neutrino Programmes, Accelerator and Reactor based", "Neutrino Telescopes 2007", Venice, March 6-9 2007.

# The high energy options

Several papers explored the physics potential of higher energy beta beams, showing how the experimental sensitivities can be improved if a higher energy accelerator than the SPS could be used (performances shown in later slides):

- J. Burguet-Castell et al., Nucl. Phys. B 695, 217 (2004), Nucl. Phys. B 725, 306 (2005) ( $\gamma = 150, 350$ )
- F. Terranova et al., Eur. Phys. J. C 38 (2004) 69:  $\gamma=2500, \gamma=4158$
- P. Huber, M. Lindner, M. Rolinec and W. Winter, Phys. Rev. D 73,053002 (with a discussion of fluxes vs.  $\gamma$ ).
- S. Agarwalla, S. Choubey, A. Raychaudhuri, hep-ph/0610332
  - Need a proton machine of 1 TeV energy (LHC cannot be used at such high fluxes)
  - Assume the same ion decay rates of the SPS option.
  - The decay ring length rises linearly with  $\gamma$

### **Electron capture beams**

Radioactive ions can produce neutrinos also through electron capture.

### Monochromatic, single flavor neutrino beams!

- J. Bernabeu, J. Burguet-Castell, C. Espinoza and M. Lindroos, hep-ph/0505054
- J. Sato, hep-ph/0503144. M. Rolinec and J. Sato, hep-ph/0612148.
- The same complex could run either beta or electron capture beams.
- No way to have  $\overline{\nu}_e$  beams.
- Ions should be partially (and not fully) stripped. Technologically challenging.
- Ion candidates are much heavier than beta candidates and have longer lifetimes (more difficult to stack them in the decay ring)

# The basic concept of a neutrino factory (the CERN scheme)

- High power (4 MW) proton beam onto a liquid mercury target.
- System for collection of the produced pions and their decay products, the muons.
- Energy spread and transverse emittance have to be reduced: "phase rotation" and ionization cooling
- Acceleration of the muon beam with a LINAC and Recirculating Linear Accelerators.
- Muons are injected into a storage ring (decay ring), where they decay in long straight sections in order to deliver the desired neutrino beams.
- GOAL:  $\sim 10^{21}~\mu$  decays per straight section per year



# **Oscillation signals at the neutrino factory**

$$\mu^-$$
 ( $\mu^+$ ) decay in ( $u_\mu$  ,  $\overline{
u}_e$ ) (( $\overline{
u}_\mu$ ,  $u_e$ )).

**Golden channel:** search for  $\nu_e \rightarrow \nu_\mu$  ( $\overline{\nu}_e \rightarrow \overline{\nu}_\mu$ ) transitions by detecting wrong sign muons.

Default detector: 40-100 kton iron magnetized calorimeter (Minos like)

Silver channel: search for  $\nu_e \rightarrow \nu_{\tau}$  transitions by detecting  $\nu_{\tau}$  appearance.

Ideal detectors:  $4 \times$  Opera or 10 Kton LAr detector.

All these detectors can be accomodate at LNGS. Ideal baseline for a 50 GeV Neutrino Factory is  $\sim 3000$  km.

# **ISS and European design study.**

ISS stands for International Scoping study, an international effort started about 2 years ago to fully establish the possibilities and the physics potential of future neutrino beam facilities. The final document will be ready soon. Next ISS plenary meeting: CERN 29-30 March.

This year will be a call for proposals from EU in the FP7 framework. The neutrino phyisics community is going to produce a request for a design study of a future neutrino beam facility: EuroNu.



Line widths reflect different assumptions on machine configuration, fluxes, detector performances and systematic errors.

Double Chooz will start soon with an excellent discovery window.

Double Chooz will start soon with an excellent discovery window.

It's not too early to discuss and study next to next generation neutrino beam experiments.

Double Chooz will start soon with an excellent discovery window.

It's not too early to discuss and study next to next generation neutrino beam experiments.

New concepts and new ideas have raised great interest. We are in the phase of their conceptual development and comparison of the different possibilities.

Double Chooz will start soon with an excellent discovery window.

It's not too early to discuss and study next to next generation neutrino beam experiments.

New concepts and new ideas have raised great interest. We are in the phase of their conceptual development and comparison of the different possibilities.

CERN is not fully supporting future neutrino beams, their development will have to be integrated inside the foreseen upgrades of LHC.

Double Chooz will start soon with an excellent discovery window.

It's not too early to discuss and study next to next generation neutrino beam experiments.

New concepts and new ideas have raised great interest. We are in the phase of their conceptual development and comparison of the different possibilities.

CERN is not fully supporting future neutrino beams, their development will have to be integrated inside the foreseen upgrades of LHC.

Funding agencies at present are more concerned to local interests rather than to an optimal European facility.

Double Chooz will start soon with an excellent discovery window.

It's not too early to discuss and study next to next generation neutrino beam experiments.

New concepts and new ideas have raised great interest. We are in the phase of their conceptual development and comparison of the different possibilities.

CERN is not fully supporting future neutrino beams, their development will have to be integrated inside the foreseen upgrades of LHC.

Funding agencies at present are more concerned to local interests rather than to an optimal European facility.

Developments in this field are up to now a bottom-up process, driven by the foundamental importance of neutrino oscillations and the enthusiasm of neutrino physicists.

# Playing on the systematic string



### **Best constraint**

$$\sigma_{rel}$$
 = 0.38 %

$$\varepsilon_{elt} = 10^{-2}$$

### Worst constraint

$$\sigma_{rel} = 0.6 \%$$
  
 $\sigma_{pwr} = 3.0 \%$   
 $\sigma_{abs} = 3.0 \%$ 



# Improving CHOOZ: summary

# @CHOOZ: R = 1.01 ± 2.8%(stat)±2.7%(syst)

- Statistical error -

|                    | CHOOZ                                  | Double-Chooz                           |  |  |
|--------------------|----------------------------------------|----------------------------------------|--|--|
| Target volume      | 5,55 m <sup>3</sup>                    | 10,3 m <sup>3</sup>                    |  |  |
| Target composition | 6,77 10 <sup>28</sup> H/m <sup>3</sup> | 6,82 10 <sup>28</sup> H/m <sup>3</sup> |  |  |
| Data taking period | Few months                             | 3-5 years                              |  |  |
| Event rate         | 2700                                   | CHOOZ-far : 40 000/3 y                 |  |  |
|                    | 2100                                   | CHOOZ-near: >1 10 <sup>6</sup> /3 y    |  |  |
| Statistical error  | 2,7%                                   | 0,5%                                   |  |  |

Luminosity incerase  $L = \Delta t \times P(GW) \times Np$ 

# - Systematic & Background errors -

|                       | Chooz      | Double-Chooz |
|-----------------------|------------|--------------|
| Reactor cross section | $1.9 \ \%$ |              |
| Number of protons     | 0.8~%      | 0.2~%        |
| Detector efficiency   | $1.5 \ \%$ | $0.5 \ \%$   |
| Reactor power         | 0.7~%      |              |
| Energy per fission    | 0.6~%      |              |

Improve the detector concept Two identical detectors  $\rightarrow$  towards  $\sigma_{relative} < 0,6\%$ Careful backgrounds control  $\rightarrow$  error<1%

# Systematic business CHOOZ – Double Chooz – Daya Bay

| Error Source | Error Type    | Error Description                   | CHOOZ    | DC       | DC       | DB       | DB (No R&D) | DB (Claim) |
|--------------|---------------|-------------------------------------|----------|----------|----------|----------|-------------|------------|
|              |               | Pagator                             | ADSOIUTE | ADSOIUTE | Relative | ADSOIUTE | Relative    | Relative   |
|              |               | Reactor<br>Production Cross Section | 1 0 0 %  | 1 0 0 %  |          | 1 0 0 %  |             | 0 13%      |
| Reactor      |               | Core Powers                         | 0.70%    | 0.70%    |          | 0.70%    |             | 0.1370     |
| Reactor      |               | Energy ner Eission                  | 0.70%    | 0.70%    |          | 0.70%    |             |            |
|              |               | Solid Angle/Bary. Displct.          | 0.0070   | 0.0070   | 0.20%    | 0.0070   | 0.08%       | 0.08%      |
|              |               | Detector                            |          |          |          |          |             |            |
|              |               | Detection Cross Section             | 0.30%    | 0 10%    |          | 0.30%    |             |            |
| Detector     | Free H in TG  | Volume                              | 0.30%    | 0.10%    | 0 20%    | 0.00%    | 0.20%       | 0.02%      |
| 20100101     |               | Fiducial Volume                     | 0.20%    | 0.20%    | 0.20 / 0 | 0.20 /0  | 0.20 /0     | 0.0270     |
|              |               | Density                             | •        | 0.10%    | 0.01%    |          | 0.01%       | 0.01%      |
|              |               | H/C (Chemical Composition)          | 0.80%    | 0.80%    | 0.10%    | 0.20%    | 0.20%       | 0.10%      |
|              | Electronics   | Dead Time                           | 0.25%    |          | 0.00%    |          |             |            |
| Analysis     |               | Analysis                            |          |          |          |          |             |            |
| Analysis     | Particle Id   |                                     |          |          |          |          |             |            |
|              | Positron      | Escape                              | 0.10%    |          |          |          |             |            |
|              |               | Capture                             | 0.00%    |          |          |          |             |            |
|              |               | Identification Cut                  | 0.80%    | 0.10%    | 0.10%    |          | 0.20%       | 0.05%      |
|              | Neutron       | Escape                              | 1.00%    |          |          |          | 0.01%       | 0.01%      |
|              |               | Capture (% Gd)                      | 0.85%    | 0.30%    | 0.30%    |          | 0.01%       | 0.01%      |
|              |               | Identification Cut                  | 0.40%    | 0.10%    | 0.10%    |          | 0.10%       | 0.03%      |
|              | Anti-neutrino | Time Cut                            | 0.40%    | 0.10%    | 0.10%    |          | 0.10%       | 0.03%      |
|              |               | Distance Cut                        | 0.30%    |          |          |          |             |            |
|              |               | Unicity (neutron multiplicity)      | 0.50%    |          |          |          | 0.05%       | 0.01%      |
|              |               | Efficiency uncert due to bkg        |          |          |          |          |             |            |
| Total        |               |                                     | 2.90%    | 2.31%    | 0.46%    | 2.15%    | 0.39%       | 0.20%      |



# **Testing & prototyping**





## Demagnetization





Th. Lasserre 07/02/2007



L1 Trigger Board





# Gd doped scintillator

• Solvant: 20% PXE – 80% Dodecane

# • Gd loading: being developed @MPIK

- 0.1% Gd loading of Gd-dmp (Beta Dikitonate)
- Long term Stability promising
- LY ~7000 ph/MeV: 6 g/l PPO + 50 mg/l Bis-MSB
- Attenuation length: 5-10 m meters at 420 nm

MPIK new building for storage

and purification of scintillators

• Radiopurity  $\rightarrow$  U: 10<sup>-12</sup> g/g - Th: 10<sup>-12</sup> g/g - K: 10<sup>-9</sup> g/g





- Heidelberg MPIK  $\rightarrow$  Transition to industrial production of 100 kg of Gd  $\rightarrow$  summer 2007
- On-site storage building *available* at Chooz → Upgrade will be done in 2007

Th. Lasserre 07/02/2007



# **Conclusions & outlook**

Funding has been established in Europe
 → Request in Japan and US

# First goal: measurement of θ<sub>13</sub>

Double Chooz moving towards the construction phase !

- 2007-08 → Detector construction & integration
- 2008  $\rightarrow$  Start of phase I : Far 1 km detector alone sin<sup>2</sup>(2 $\theta_{13}$ ) < 0.06 in 1,5 year (90% C.L.)
- 2009 → Start of phase II : Both near and far detectors sin<sup>2</sup>(2θ<sub>13</sub>) < 0.025 in 3 years (90% C.L.) Complementarity with Superbeam experiments: T2K, Nova

# Faisability study on non proliferation

Reactor v's track the Pu isotopic content of reactors → new beta spectra measurement & small detector deployed close to nuclear cores

- 2009-10 - Near detector at 280 m = prototyping of a futur AIEA monitor?

# **Neutrino energy reconstruction (QE kinematics)**

