Mauro Mezzetto Istituto Nazionale di Fisica Nucleare, Sezione di Padova

" Sterile Neutrinos"

- Anomalies
- Fits
- Requirements for future experiments
- New initiatives

LSND at the Los Alamos LAMPF: a 3.8 σ evidence

MiniBooNE experiment at FNAL Booster

Overall a 3.8 σ excess of events. Mostly in the low energy region, where the experiment has poor control of the backgrounds (region initially excluded from the analysis).

Gallium Anomaly

Hampel et al 1998, Kaether et al 2010, Abdurashitov et al 1998, Abdurashitov et al 2005

4 exposures of Gallex and Sage to ⁵¹Cr and ³⁷Ar sources Originally designed and funded as calibration of the detection efficiency Now interpreted as neutrino disappearance (assuming perfect calibration)

Reactor Neutrino Anomaly

Nuclear reactors: electron spectra from ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu are translated to $\overline{\nu}_e$ flux Schreckenbach 82, 85

Experiments originally reported no deviations from predictions A recalculation of fluxes lead to ~ 3% increase -> exp. results reinterpreted as a deficit evidence

Müller et al 2011, Huber 2011

Maybe with ~5% systematic errors

Hayes et al., arXiv 1309.4146

• 2013 result: μ = 0.936 ± 0.024, 2.7 σ deviation from unity (T. Lasserre, TAUP 2013)

Empirical 2v fits

Modelling (the 3+1 case)

$$\begin{split} \mathsf{P}^{\mathsf{SBL}}_{\stackrel{(-)}{\nu_{\alpha}} - \nu_{\beta}} &= \sin^2 2\theta_{\alpha\beta} \sin^2 \ \frac{\Delta m_{41}^2 L}{4E} \\ \mathsf{P}^{\mathsf{SBL}}_{\stackrel{(-)}{\nu_{\alpha}} - \nu_{\alpha}} &= 1 - \sin^2 2\theta_{\alpha\alpha} \sin^2 \ \frac{\Delta m_{41}^2 L}{4E} \\ & \alpha, \beta = e, \mu, \tau, s \\ & \sin^2 2\theta_{\alpha\beta} = 4|U_{\alpha4}|^2|U_{\beta4}|^2, \\ & \sin^2 2\theta_{\alpha\alpha} = 4|U_{\alpha4}|^2 \ (1 - |U_{\alpha4}|^2) \end{split}$$

In a 3+1 model, oscillations depend from 2 additional mixing angles and 1 additional Δm^2 (assuming that steriles are much heavier than standard neutrinos)

So v_{μ} appearance and disappearance are linked by v_{μ} disappearance !

What about $\nu_{\!_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ disappearance?

Null results from several different experiments, including atmoshperic neutrinos in SK

Kopp et al., JHEP 1305 (2013) 050 [arXiv:1303.3011]

Global fits

Tension between appearance and disappearance results, not resolved even enlarging the model to 3+2 neutrinos

Counting neutrinos with Cosmology

Planck results aren't model independent or unambiguous But Cosmology is not favoring sterile neutrinos anymore Limits on absolute neutrino masses are becoming quite stringent

Planck 2013 results. I. Overview of products and scientific results

An exploration of parameter space beyond the basic set leads to: (a) firmly establishing the effective number of relativistic species (neutrinos) at 3; (b) constraining the flatness of space-time to a level of 0.1%; (c) setting significantly improved constraints on the total mass of neutrinos, the abundance of primordial Helium, and the running of the spectral index of the power spectrum.

Planck 2013 results. XVI. Cosmological parameters

The impact of additional astrophysical data is particularly complex in our investigation of neutrino physics (Sect6.3). We will use the effective number of relativistic degrees of freedom, Neff as an illustration. From the CMB data alone, we find $N_{eff} = 3.36 \pm 0.34$. Adding BAO data gives $N_{eff} = 3.30 \pm 0.27$. Both of these values are consistent with the standard value of 3.046. Adding the H_0 measurement to the CMB data gives $N_{eff} = 3.62 \pm 0.25$ and relieves the tension between the CMB data and H₀ at the expense of new neutrino-like physics (at around the 2.30 level). It is possible to alleviate the tensions between the CMB, BAO, H₀ and SNLS data by invoking new physics such as an increase inNeff. However, none of these cases are favoured significantly over the base ACDM model by the Planck data (and they are often disfavoured). Any preference for new physics comes almost entirely from the astrophysical data sets. It is up to the reader to decide how to interpret such results, but it is simplistic to assume that all astrophysical data sets have accurately quantified estimates of systematic errors. We have therefore tended to place greater weight on the CMB and BAO measurements in this paper rather than on more complex astrophysical data

Summarizing the present status

- $\sim 3\sigma$ anomalies in 4 different fields
- None of them is fully convincing by itself.
- They can be compatible, but the global picture is not convincing
- Cosmology is not more supporting the existence of a fourth neutrino.
- ... seventeen years after the first LSND paper ...
- ... but several new proposals are now on the market.

No direct evidence of steriles whatsoever

- Steriles are not necessary to build up $\nu_{\mu} \rightarrow \nu_{e}$ transitions or ν_{e} disappearance
- They are invoked to accommodate a fourth δm^2 faking the LEP limit on three neutrinos.
- Their only possible direct signature is NC disappearance

Experimental Goals

- Bring anomalies to evidences or get rid of them definitely.
- Provide a "Smoking Gun" signature of oscillations: close detectors or oscillation pattern
- Demonstrate they are sterile neutrinos: NC disappearance.
- Measure in the same experiment all the effects: $\nu_{\mu} \rightarrow \nu_{e}$ transitions, ν_{e} disappearance (these two effects could conflict in an accelerator experiment), ν_{μ} disappearance
- Measure both $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu}$ transitions: this allow to discriminate 3+1 from 3+2 (in other words count the number of sterile neutrinos) and in case measure CP violation

The only setup so far proposed capable of providing all these features is ${\sf Icarus}/{\sf Nessie}$ at CERN (or NuStorm instrumented with an iron magnetized and a liquid argon detector)

Steriles and IceCube

The MSW resonance and parametric enhancement of the ν_{μ} - ν_{s} oscillations lead to distortion of the zenith angle distribution of the muon-track events which can be observed by IceCube

3 times the statistics of IceCube-79

10% systematic error

Solid lines are sensitivity for different number of energy bins

Dashed lines are fits from Kopp et al, 2013: numu disappearance (brown), nue appearance (green), global (grey)

Mauro Mezzetto (INFN Padova)

Steriles and Katrin

Katrin can test the v_{μ} disappearance anomalies with its nominal sensitivity

LSND replica at J-PARC MLF

Proposal in arXiv:1310.1437, signed by JPN and Los Alamos First phase (approved): 25 ton detector at 17 m from the target Second phase: 1 kton detector at 60 m

Proposals at neutrino beams

MicroBooNE Data taking in 2014. A 170 ton Liquid Argon TPC located along the Booster neutrino beam line at Fermilab. The experiment will measure low energy neutrino cross sections and investigate the low energy excess events observed by the MiniBooNE experiment.

A Lol has been submitted at FNAL to add a close detector (LAr1-ND) and eventually a 1 kton LAr far detector (LAr1) to MicroBooNE (see also arXiv:1309.7987)

Icarus/Nessie (arXiv:1203.3432, see next slide) The new neutrino beam line has not been included in the CERN medium term plan.

IsoDAR arXiv:1205.4419. A novel, high-intensity source of electron antineutrinos, based on new generetion cyclotrons (60 MeV, 0.8-1.6 mA), from the production and subsequent decay of ⁸Li ($\langle E_{\nu} \rangle = 6.4$ MeV). The detector could be an existing 1 kton scintillator-based detector (Kamland). Very good sensitivity to ν_e disappearance at $\Delta m_2^2 \sim 1 eV^2$ featuring the ability to distinguish between the existence of zero, one, and two sterile neutrinos.

NuStorm, arXiv:1308.0494. The stage 0 of a Neutrino Factory: neutrino beam from muon decays. Muons are stored in a decay ring without any cooling and acceleration. A milestone for the development of new generation neutrino beams, with good (outstanding) capabilities in sterile neutrinos and cross section measurement. Price tag around 200-300 M\$.

ICARUS-NESSIE

A coupled system of LAr detectors

and Muon Spectrometers

NEAR SITE @300 m : LAr mass = 119 t Iron magnet mass = 840 t 5 interactions/spill

 $2 \cdot 10^{13}$ p/spill (with "+" polarity)

FAR SITE @1600 m: LAr mass = 476 t Iron magnet mass = 1515 t 0.65 interactions/spill

Observation v_{μ} , v_e CC, NC channels Charge separation and muon momentum

¹⁴⁴Ce-¹⁴⁴Pr: CeLAND (KamLAND)

erc

- 75 kCi of ¹⁴⁴Ce-¹⁴⁴Pr (CeO₂)
- Production feasible at Mayak
 Facility (RU) in 2014 (1 y)
 - Standard SNF reprocessing
 - Ce extraction through displacement chromatography
- Need 16 cm tungsten-shield
- KamLAND being prepared
 - Deployment
 - in water veto (3-16 m)
 - In Xenon Room (5-18 m)
 - Run in // with KamLAND-zen
- Deployment in 2015

SOX: Short distance v_e Oscillations with BoreXino

• Science

- Motivations
 - Search for sterile neutrinos or other short distance effects on P_{ee}
 - Measurement of ϑ_W at low energy (~ 1 MeV)
 - Measurement of neutrino magnetic moment
 - Check of g_V e g_A at low energy

• Technology

- Neutrino source: ⁵¹Cr
- Anti-neutrino source: 144Ce

• Project

- SOX-A 5¹Cr external
 - SOX-B 144Ce external
 - SOX-C 144Ce internal

ERC Ideas approved

European Research Council ERC-2012-AdG Advanced Investigator Grant SOX: Short distance neutrino Oscillations with BoreXino

SEVENTH FRAMEWORK PROGRAMME

"Ideas" specific programme European Research Council

Grant agreement for Advanced Grant

Annex I - Description of Work

Project acronym: SOX Project full title: <u>Short distance neutrino O</u>scillations with Bore<u>X</u>ino Grant agreement N. 320873 Duration: 60 months Date of preparation of annex 1: 23 - 10 - 2012 Principal Investigator: Prof. Marco Pallavicini Host Institution: Istituto Nazionale di Fisica Nucleare (INFN) and Laboratori Nazionali del Gran Sasso (LNGS)

• Mission: test the existence of low L/E v_e and/or \overline{v}_e anomalies by placing well known artificial sources close to or inside Borexino

• SOX-A

- ⁵**Cr** source in pit beneath detector
- 8.25 m from center [2015/2016]

• SOX-B

- ¹⁴⁴Ce-¹⁴⁴Pr source in W.T.
- PPO everywhere to enhance sensitivity
- 7.15 m from center [2015/2016?]

• SOX-C

- 144Ce-144Pr source in the center
- Only after the end of solar program
- More effort and more time
 2016

Source sensitivities

CeLAND (KamLAND)

SOX (Borexino)

Reactor v Proposals

Experiment Type	Projects	P _{Th}	M _{det}	L	Depth
Mature Gd-doped LS detector Technology	Nucifer (FRA)	70 MW	0.7 tons	7 m	Few mwe
	Stéréo (FRA)	50 MW	2 tons	[8-11] m	10 mwe
	Neutrino 4 (RU)	100 MW	2 tons	[6-12] m	Surf.
Highly segmented detector for background reduction	DANSS (RU)	1 GW	1 ton	[10-12] m	50 mwe
	SoLid (UK)	45-80 MW	3 tons	8 m	10 m
Enhanced neutron Tagging					
	Hanaro (KO)	30 MW	0.5 t	6 m	Few mwe
2 detector complex or Moving detector	US project	20-120 MW	-	4m & 15m	Surf.
	China project	-			
	DANSS/Neutrino4	Movable detector			

Conclusions

We are facing four sets of anomalies, they have begun to show up 17 years ago and their case became stronger in the latest years (with a peak in 2011).

None of the hints is convincing by itself.

Nevertheless they can be accommodated by a single model (with some tension).

Would the model be true we had access to outstanding discoveries (new neutrino states beyond the standard model, CP violation)

This makes the physics case very interesting and a new experimental campaign to falsify the anomalies or make the discoveries is both imperative and urgent.

Several different initiatives will be operative in the next years exploring almost all the allowed possibilities and being open to surprises.