Study of possible opportunities for leptonic CP violation and v mass hierarchy at LNGS

vTURN, 8-10 May 2012 LNGS INFN national labs

S. Dusini ^{PD} <u>A. Longhin</u> ^{LNF} M. Mezzetto ^{PD} L. Patrizii ^{BO} M. Sioli ^{BO} G. Sirri ^{BO} F.Terranova ^{MB}

INFN: LNF, PD, BO, MI-B

Outline

- Goals and working hypotheses
- Leptonic CP and mass hierarchy with a 730 km baseline
- Neutrino beam simulation
- Method: CP violation coverage vs exposure (Mton MW)
- Results and comparison with other baselines
- Conclusions

May 8-10, 2012 - Laboratori Nazionali del Gran Sasso - Assergi, I

Nay 8-10, 2012 - Laboratori Nazionali del Gran Sasso - Assergi

Goals

- Under the light of recent measurements of a large θ_{13}
- Which are the requirements for facilities based on the CERN-GranSasso baseline in order to have a given chance to measure CP violation (CPV)

- i.e. at 3σ for > 40% of the cases (δ values)?

Impact of prior knowledge of the mass hierarchy (MH) ?

Assumptions

- LAr TPC technology
- Investigate (within reasonable contraints): mass of detector / number of pots (continuous sampling) proton energy / off-axis angle (a few trials)

not easy to 'populate' using a high-E proton beam and due to cross section suppression

$v_{\mu} \rightarrow v_{e}$ probability at 730 km

CP conserving values $(0,\pi)$ lie "in the middle".

To exclude CPV we have to be able to "exclude the red lines"

δ ~ π/2 appearance ↑ for ν. δ ~ 3/2π appearance ↓ for ν.

> CP violation := CPV Mass hierarchy:= MH Normal hierarchy: NH Inverted hierarchy: IH

Normal hierachy : appearance (v-bar) > appearance (v) Inverted hierachy : appearance (v-bar) < appearance (v)

CPV discovery and MH determination

- **CPV**: for each δ value claim 3 σ discovery if the CP conserving cases ($\delta = 0, \pi$) can be excluded (for both hypotheses on MH, unless it is assumed known)
- **MH** : make a MH assumption "A". For each δ value claim MH determination if MH B can be excluded for any δ value

Far detector at LNGS

- LNGS
 - On-axis underground LAr TPC (up to 10 kt)
 - Off-axis shallow depth LAr TPC (up to 100 kt)
- We have considered these options separately for the time being (no double detector on-axis and off-axis)

Contraints on mass underground

- Hall B (110 m)
- ICARUS T600 module
 - 3.9 × 4.3 × 19.6 m³
 - 0.735 kt (0.476 fiducial)
- ICARUS T1200 design
 - 10.3 × 10.3 × 21 m³
 - 1.47 kt (0.952 fiducial)

CERN/SPSC 2002-027 p.122-130 http://cdsweb.cern.ch/record/574836 Tab. 6.1-3, Fig. 6.1 p.122

4 x T1200 modules \rightarrow ~ 4 kt fiducial

ad-hoc design: could go up to ~ 7.5 kt

10 kt allowing for extra space in another hall

Off-axis configurations

- ~ 7 km optimal from studies on θ₁₃ reach from MODULAr (hep-ph/0704.1422)
- Possible shallow depth sites identified at 10 km outside of natural park and with roads (hep-ph/0704.1422)
- 7 km tends to be quite far from maximum but with higher statistics with respect to 10 km

From hep-ph/0704.1422

- Both 7 and 10 km are considered in the following
- ~ 9.6 and 13 mrad

Beams from CERN

For the off-axis configurations we consider the SPS @ 400 GeV

For the on-axis configuration using 400 GeV tends to produce poor results since it is quite hard to populate the low energy region (see for example hep-ph/0609106v1).

For this reason a 50 GeV beam has been considered. This allows to populate the right energy region.

Further optimization considering other p energies could be pursued.

We will show results as a function (MW Mt 10⁷s) thus allowing to "read" the combination of mass and beam needed to get a certain coverage.

Anyway we set some benchmarks:

SPS@400 GeV: 1.2 10^{20} pot/year = 2.7 nominal CNGS ~ 770 kW 50 GeV machine: 0.77 \rightarrow 2.4 MW (PS2 LAGUNA)

Run sharing: 5 years of v + 5 years of anti-v

Focusing system: off-axis 400 GeV

Optimised configuration for off-axis beam (to scale)

Tunnel L = 1000 m r =1.225 m (CNGS) 1 m long graphite target

Optimization: done with the fast simulation BMPT code (E.P.J.C20:13-27,2001). Final fluxes obtained with a GEANT4 based simulation (E.P.J.C 71:1745, 2011)

Systematic variation of currents, horn-reflector distance and target position keeping the shapes of horn (NOvA) and reflector (the CNGS one) fixed.

The figure of merit was taken as the v_{μ}^{CC} rate in the peak region for the 7 km configuration.

Optimal configuration yields similar event rates wrt to configurations optimised by the MODULAr group (see next \rightarrow)

Off-axis 400 GeV event rates

 $\nu_{\rm r}^{\rm CC}$ v_{μ} CC / kton / 10¹⁹ pot / GeV 18 16 Fair agreement with other simulations -14 optimizations. 12 Digitized from hep-ph/0609106v1 Our best fluxes are 10 τ opt. on-ax ~10% lower than best MODULAr one. 8 10 GeV opt. OA 9.56 kr Digitized from Our fluxes scaled up by hep-ph/0704.1422 6 MODULAr OA 7 km 10% (considered as an improvement factor) this OA 7 km 2 this OA 10 km 2 10 12 8 0 6 E (GeV)

Optimization done in 2010 to get optimal performances on θ_{13} in the context of LAGUNA. GEANT4 based simulation + GLOBeS. Scanning of relative positions of the magnetic lenses and target position.

http://pos.sissa.it/archive/conferences/120/325/ICHEP%202010_325.pdf

v_{μ}^{CC} spectra (power normalized)

"Region of interest" ~ < 2.5 GeV

Second maximum highly suppressed by flux and cross section.

Power normalized 50 GeV on axis beam outperforms 400 GeV on axis beam (CNGS-LE optimization of hep-ph/0609106v1 taken as reference).

^{CC} spectra, 10 kt on-axis $E_{2} = 50 \text{ GeV}, 3 \cdot 10^{21} \text{ pot/year} (2.4 \text{ MW}), 5 v + 5 \text{ bar-v years}$

 $v_e 5 y 10 \text{ kt } \delta = 0.0 \text{ rad. N.H.}$

 \overline{v}_{a} 5 y 10 kt δ = 0.0 rad. N.H.

Fair separation of mass hierarchy. Some sensitivity from the shape of spectrum.

 v_e 5 y 53 kt δ = 0.0 rad. N.H.

 $\overline{\nabla}_{a}$ 5 y 53 kt δ = 0.0 rad. N.H.

^{CC} spectra: 20 kt, 7 km off-axis $E_{2} = 400 \text{ GeV}, 1.2 \cdot 10^{20} \text{ pot/year} (770 \text{ kW}), 5 \text{ v} + 5 \text{ bar-v years}$

 $v_{\rho} 5 y 53 \text{ kt } \delta = 0.0 \text{ rad. N.H.}$

 \overline{v}_{a} 5 y 53 kt δ = 0.0 rad. N.H.

More statistics wrt to 10 km off-axis but lower sensitivity to mass hierarchy and less information from the shape of spectrum.

Parametrization of the LAr TPC (I) • In the framework of the GLOBeS program (v3.1.11) 0.1% of v_{\parallel}^{CC} • NC background contamination (conservative) From studies in 0704,1422 (MODULAr) • Error on signal and background normalization 5 %

• Energy resolution and efficiency for $v_{_e}$ and bar- $v_{_e}$ implemented through smearing matrices obtained from GENIE Monte Carlo generator \rightarrow

Parametrization of the LAr TPC (II)

Quasi elastic (QE

Non-QE

- 90 % efficiency
- $\sigma(E_{had})/E_{had} = 20\%/\sqrt{E_{had}}$

- 80% efficiency
- smearing of true-level e-momentum
- 2-body formula for E
- yields $\sigma(E_y)/E_y \sim 0.05/\sqrt{E_y}$

Matrices calculated for v_{a} and anti- v_{a} separately.

Results $! \rightarrow$

CPV coverage (on-axis 50 GeV)

5 % systematic error on flux normalization

5 v + 5 v bar years

CP coverage at 3σ (%), 5+5 y, err.sys. = 0.05 ONAXIS

CPV coverage (off-axis 7 km 400 GeV)

5 % systematic error on flux normalization

5 v + 5 v bar years

CP coverage at 3σ (%), 5+5 y, err.sys. = 0.05 OFFAXIS7

CPV coverage (off-axis 10 km 400 GeV)

5 % systematic error on flux normalization

5 v + 5 v bar years

CP coverage at 3 σ (%), 5+5 y, err.sys. = 0.05 OFFAXIS10

CPV coverage comparison

ON-AXIS 50GeV OFF-AXIS 400 GeV at 7 km OFF-AXIS 400 GeV at 10 km

as a function of exposure (MW Mton 10^7 s)

ONAXIS in general works better due to better coverage of the 1st oscillation maximum
For the same reason 10 km performs better that 7 km except for very low exposures where lack of statistics (at 10 km) counts

MH coverage

5 % systematic error on flux normalization

5v + 5vbar years

Mass hierarchy reach is better for the on-axis configuration (evident from v_e appearance spectra shown earlier).

The 10 km off-axis is better than 7 km for the same reason (only 10 km shown)

10⁻¹

27

10

MW 10⁷ s Mton

Systematics on absolute flux normalization

Considered values 1-3-5-10 %

CP coverage at 3σ (%), 5+5 y err.sys. = 0.01-0.1 ONAXIS

CP coverage at 3σ (%), 5+5 y err.sys. = 0.01-0.1 OFFAXIS7

The effect is very relevant as expected (δ variations induce mostly a change in normalization at this baseline)

5 % is a widely used in many calculations, T2K super-beam nowadays is still above the 10% level

Design of future experiments must address this point (LAr TPC already goes in this direction). Improving the systematic error pays more tha brute force (boosting mass)

Comparison with other baselines

Being either very long (~2300 km) or very short (~100 km).

Performed under the same assumptions on LAr detector performances, systematics errors and with the same analysis program.

Exercise: low-E + short baseline (102 km)?

E.P.J.C 71:1745, 2011

Philosophy of SPL-Fréjus: L=130 km, E^{1st} = 260 MeV. E_n = 4.5 GeV, 4MW SPL + 440 kton Water Cherenkov

Preliminary conclusions

- On-axis configuration using a 50 GeV p-driver performs better than off-axis in terms of coverage vs exposure. Limitation at 10 kt (inside LNGS) would forces to use a multi-MW driver.
- Off-axis configuration with SPS@400 GeV. A reasonable upgrade (< x 3) considered. More sensitive to degeneracy with mass hierarchy w.r.t. on-axis at 50 GeV. 10 km better even though at small exposure 7 km "wins".
- Comparison with 2290 km baseline: CP performance is not much different w.r.t. 730 km (there is a sort of "baseline invariance" at large θ₁₃). Unbeatable for MH. 2nd oscillation maximum is usable and "pays" at high exposures.
- Low baseline+high power Linac. Despite high power, still large masses are needed (not compatible with existing underground lab constraints).
- Systematic errors control is crucial. Near (ancillary) detector(s) mandatory. Allows sparing brute force ('kt').
- Outlook: other SPS energies could be investigated, association of on-axis and off-axis detector ? Further focusing optics optimization.

backup

vTURN, LNGS. 8-10 May 2012

-

Comparison with LBNE for CPV

CPV Sensitivity (3o) 34 kton LAr S_{CP} (degrees) 700 kW 120 GeV 150 5 yrs v + 5 yrs ⊽ 700 kW 34 kton 5+5 100 1% norm err on signal Coverage ~ 67 % 50 Beam inverted CP coverage at 3 o (%), 5+5 err.sys. = 0.01 OFFAXIS CP coverage at 3σ (%), 5+5 err.sys. = 0.01 NH known IH known NH unknow 90 290 km N.H. sin22th 13±0.1 heph-ph (1109.652) 290 km I.H. sin22th13±0.1 heph-ph (1109.652) 80 70 60 10⁻³ 50 10⁻² sin²(2012) 40 30 20 10 10²³ 10²⁴ kton x pot