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What neutrino oscillations tell us about this picture?
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Shopping list for future experiments
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Sub leading νµ − νe oscillations
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Measuring Leptonic CP violation

ACP = P(νµ→νe)−P(νµ→νe )
P(νµ→νe)+P(νµ→νe )
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LCPV asymmetry at the first oscillation maximum, δ = 1, Error

curve: dependence of the statistical+systematic (2%) computed for a

beta beam the fixed energy Eν = 0.4 GeV, L = 130 km.

The detection of such asymmetry is an evidence of Leptonic CP violation only
in absence of competitive processes (i.e. matter effects, see following slides) ⇒
”short“ Long Baseline experiments
Statistics and systematics play different roles at different values of θ13 ⇒ impossible
to optimize the experiment without a prior knowledge of θ13

Contrary to the common belief, the highest values of θ13 are not the easiest condition
for LCPV discovery
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Measuring mass hierarchy

An internal degree of freedom of neutrino masses is the sign of ∆m2
31:

sign(∆m2
23).
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This parameter decides how mass eigenstates are coupled to flavor
eigenstates with important consequencies to direct neutrino mass and
double beta decay experiments.
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Neutrino Oscillations in Matter

Pθ13 = sin2(2θ13)sin θ23
2 sin2((Â − 1)∆̂)/(Â − 1)2;

psin δ = α sin (2θ13)ζ sin δ sin (L∆̂) sin (Â∆̂) sin ((1 − Â)∆̂)/((1 − Â)Â);
pcos δ = α sin (2θ13)ζ cos δ cos ∆̂ sin (Â∆̂) sin (1 − Â∆̂)/((1 − Â)Â);

psolar = α2cos θ23
2 sin2 2θ12 sin2 (Â∆̂)/Â2;

α = Abs(∆m2
21/∆m2

31); ∆̂ =
L∆m2

31
4E ζ = cos θ13 sin 2θ12 sin 2θ23

Â = ±a/∆m2
31; a = 7.6 · 10−5ρ · Eν(GeV ) ρ = matter density (g cm−3)

The Â term changes sign with sign(∆m2
23)

Matter effects require long “long baselines"

Eν = 0.35GeV L ≃ 130 km
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The Â term changes sign with sign(∆m2
23)

Matter effects require long “long baselines"
Eν = 0.35GeV L ≃ 130 km

50 100 150 200 250 300 350
L HkmL

0.005

0.01

0.015

0.02

0.025

Prob8Probs in Vacuum HMagentaL and Matter HblueL<

Eν = 1GeV L ≃ 500 km

200 400 600 800 1000
L HkmL

0.005

0.01

0.015

0.02

0.025

Prob8Probs in Vacuum HMagentaL and Matter HblueL<

Eν = 3GeV L ≃ 1500 km

500 1000 1500 2000 2500 3000
L HkmL

0.01

0.02

0.03

0.04
Prob8Probs in Vacuum HMagentaL and Matter HblueL<

Mauro Mezzetto (INFN Padova) Future Long Baseline Experiments ESOF 2010, Torino, 04/07/10 6 / 28



Status after this generation of LBL experiments: θ13

From M.M. and T. Schwetz, arXiv:1003.5800
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Status after this generation of LBL experiments: CPV
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Status after this generation of LBL experiments

From P. Huber et al., JHEP 0911:044,2009.
Prediction of sensitivity including a fully optimized global run (antineutrinos in T2K and
NOνA) and full upgrade of the accelerators: 1.6 MW at J-PARC and 2.4 MW at FNAL
(Project-X)
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13

>0.03

Even a full upgrade of the accelerators and long optimized runs cannot guarantee a
succesfull search of leptonic CP violation.
New detectors, bigger than more of one order of magnitude than the existing, are
needed to achieve good sensitivities.

Experimental possibilities
Technology Detector Mass Since Future Mass

(kton) Future (kton)
Water Ceren Super Kamiokande 25 1996 HyperKamiokande 500

(Memphys)
Liquid Argon Icarus 0.5 2010 Glacier 100

Liquid Scintillator Kamland 1 2000 Lena 50
Borexino 0.5 2006

Iron Magnetized Minos 5 2003 Mind 100
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Laguna, EU Design Study FP7
(See JCAP, 2007, 0711, 011)

A coordinated European effort aimed towards conceptual
designs for European large underground detectors including
feasibility studies for site excavation and cost boundaries.
Three detection techniques investigated:

Water Cerenkov imaging (Memphys) , ∼ 500 kton,
with synergy with HK (Japan) and Dusel (USA).
Liquid argon time-projection chamber (Glacier) ,
∼ 100 kton. Technology pioneered in Europe by the
ICARUS R&D programme, at present ongoing R&D in
USA and Japan, too.
Liquid scintillator (Glacier) , ∼ 50 kton connected to
Borexino R&D programme.

Physics case (non accelerator physics)

Proton decay
Super Nova neutrinos
Relic Super Nova neutrinos
Solar and Atmospheric neutrinos
Indirect searches of DM annihilation in the sun
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The SuperBeam way

Upgrade existing or future accelerators to several MW power and
build WC detectors 10 × Super Kamiokande or 300 × Icarus

Japan.
J-Parc: 0.75 ⇒ 2 MW + Super Kamiokande ⇒ Hyper
Kamiokande (500 kton fiducial: 20 × bigger)
USA.
FNAL: Project X to a 3 × 100 kton water Cherenkov detectors (or
3 − 6 × 20kton liquid argon) at Dusel, L ∼ 1300 km.
Europe

10×CNGS ⇒ off-axis CNGS fired on a 20-100 kton liquid
argon detector
4 MW SPL fired on 500 kton water Cherenkov (Memphys) at
Frejus at 130 km
2 MW PS2 fired on 100 kton liquid Argon (Glacier) at Slanic
(RO) at 1570 km
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SuperKamiokande detector

Tank Dimensions ϕ = 39.3 m, h = 41.4 m
Volume 50 kton

External Thickness 2.6 m (7.2X0 e 4.3λ0)
Detector Volume 18 Kton

PMT’s 1885
Internal Dimensions ϕ = 33.8 m, h = 36.2 m
Detector Volume 32 kton

PMT’s 9398, 40.4% coverage
Fiducial Volume 22.5 kton

Mauro Mezzetto (INFN Padova) Future Long Baseline Experiments ESOF 2010, Torino, 04/07/10 12 / 28



The Memphys detector (hep-ex/0607026)
In the middle of the Frejus
tunnel at a depth of 4800 m.w.e
excavate three shafts of about
250,000 m3 each (Φ = 65 m, full
height=80 m). 440 kton fiducial
volume

30% coverage by
using 12“ PMT’s, 81k per shaft
(with the same photostatistics
of SuperKamiokande with 40%
coverage)

Physics scope, independently from the beam
Proton decay
Super Nova neutrinos
Relic Super Nova neutrinos
Solar and Atmospheric neutrinos
Indirect searches of DM annihilation in the sun
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SuperBeams - J-PARC phase 2 (T2HK)

Upgrade the proton driver from
0.75 MW to 4 MW
Upgrade SuperKamiokande by a
factor ∼ 20 =⇒
HyperKamiokande
Both upgrades are necessary to
address leptonic CP searches.

Other possibility:
displace half detector at the
second oscillation
maximum (T2KK) for better
sensitivity on sign(∆m2

23)and
better degeneracy removal

T. Kobayashi, J.Phys.G29:1493(2003)
JHF-HK CPV Sensitivity
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Next to statistics: systematic errors

From Huber, MM, Schwetz, JHEP 0803:021,2008
The main limiting factor for future searches of leptonic CP violation will be statistics, next
the not perfect knowledge of the neutrino beam fluxes
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SuperBeams - SPL ν beam at CERN

Decay Tunnel

νν

Possible Low Energy Super Beam Layout

Far Detector

Near Detector

 

130 km

H- linac, 2.2 (3.5) GeV, 4MW Accumulator

ring

Magnetic

horn
Target

A 3.5 GeV, 4MW Linac: the
HP-SPL.
A liquid mercury (or carbon)
target capable to manage the
4 MW proton beam. R&D
required.
A conventional neutrino beam
optics capable to survive to
the beam power, the radiation
and the mercury. Already
prototyped.
Up to here is the first stage of
a neutrino factory complex.
A sophisticated close detector
to measure at 2% signal and
backgrounds.
A megaton class detector
under the Frejus, L=130 km:
Memphys.
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PS2 Super Beams

A. Rubbia: arXiv.1003.1921

Assume 2 MW from a 50 GeV PS2.
An on-axis wide band neutrino beam.
Three possible sites: Sieroszowice at 950 km, Slanic at 1544 km or Pyhasalmi at 2300 km.
A 100 kton liquid argon detector capable of measuring neutrino oscillations at both the
first and second oscillation maxima with optimal perfromance on reconstruction of
neutrino energy and background rejection.
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Conventional neutrino beams are going to hit their ultimate limitations.
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In a conventional neutrino beam, neutrinos are produced SECONDARY particle decays
(mostly pions and kaons).
Given the short life time of the pions (2.6 · 10−8s), they can only be focused (and charge
selected) by means of magnetic horns. Then they are let to decay in a decay tunnel, short
enough to prevent most of the muon decays.

Besides the main component (νµ) at least 3 other neutrino flavors are
present (νµ, νe , νe), generated by wrong sign pions, kaons and muon
decays. νecontamination is a background for θ13 and δ, νµcontamination
dilutes any CP asymmetry.
Hard to predict the details of the neutrino beam starting from the primary
proton beam, the problems being on the secondary particle production side.
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All these limitations are overcome if secondary particles become primary

Collect, focus and accelerate the neutrino parents at a given energy.
This is impossible within the pion lifetime, but can be tempted within
the muon lifetime (Neutrino Factories) or within some radioactive
ion lifetime (Beta Beams):

Just one flavor in the beam
Energy shape defined by just two parameters: the endpoint
energy of the beta decay and the γ of the parent ion.
Flux normalization given by the number of ions circulating in
the decay ring.
Beam divergence given by γ.
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Beta Beam (P. Zucchelli: Phys. Lett. B532:166, 2002)
M. Lindroos M. Mezzetto, “Beta Beams”, Imperial College Press, 2009
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Ion production:  could be shared

with Eurisol, the facility aimed by

nuclear phyicist as a new generation

facility to study radioactive ions.

Other approaches actively studied in

the EuroNu FP7 Design Study.

Could be the SPL.

Possible sinergy with a 

SPL-SuperBeam.

See also the Neutrino Factory
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M. Lindroos M. Mezzetto, “Beta Beams”, Imperial College Press, 2009
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to be built on purpose.
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Acceleration:

use existing facilities 

at CERN: PS and SPS.

The compatibility

 of Beta Beam

with PS and SPS 

has been demonstrated.
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Beta Beam (P. Zucchelli: Phys. Lett. B532:166, 2002)
M. Lindroos M. Mezzetto, “Beta Beams”, Imperial College Press, 2009
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Beta Beam (P. Zucchelli: Phys. Lett. B532:166, 2002)
M. Lindroos M. Mezzetto, “Beta Beams”, Imperial College Press, 2009
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νe generated by He6, 100 µA, ⇒ 2.9 · 1018 ion decays/straight session/year.
νe generated by Ne18, 100 µA, ⇒ 1.1 · 1018 ion decays/straight session/year.
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Layout of a Neutrino Factory
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m Intense (4MW) proton source,

two options, the linac could be

(again) the SPL (or Project-X at

FNAL)
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Layout of a Neutrino Factory
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Muon source, conceptually

similar to a conventional ν

beam.  Sign selection is not 

needed: solenoid along the

decay tunnel instead of a

magnetic horn
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Some accelerator’s tricks

to squeeze the muons packets

before acceleration
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Layout of a Neutrino Factory
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Muon acceleration:

the fastest possible

to save muons from decay.
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Layout of a Neutrino Factory

12.6–25 GeV FFAG

3.6–12.6 GeV RLA

0.9–3.6 GeV

RLA

Linac to

0.9 GeV Muon Storage Ring

Muon Storage Ring

Linac optionFFAG/synchrotron option

Proton Driver

Neutrino Beam

Hg Target

Buncher

Bunch Rotation

Cooling

1.5 km

755 m

1
.1

 k
m

Two decay rings pointing to two

different detectors at two

different baselines.
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Neutrino Factory as a first stage of a Muon Collider
From S. Geer, Ann.Rev.Nucl.Part.Sci.59:347-365,2009.
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Oscillation signals at the neutrino factory

µ− (µ+) decay in (νµ, νe) ((νµ, νe)).

Golden channel: search for νe → νµ (νe → νµ ) transitions by
detecting wrong sign muons.
Default detector: 40-100 kton iron magnetized calorimeter
(Minos like)

Silver channel: search for νe → ντ transitions by detecting
ντ appearance.
Ideal detectors: 4× Opera or 20 Kton LAr detector.
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Sensitivity Comparison: θ13
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Sensitivity Comparison: sign(∆m2
23)
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Sensitivity Comparison: LCPV
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Conclusions
Long Baseline neutrino experiments to measure θ13 are just starting. They will explore
θ13 with a discovery potential 20 times better than the existing limit.

They won’t anyway have enough sensitivity to attack mass hierarchy and leptonic CP
violation searches with sufficient sensitivity. Further upgrades are needed.
Several possible innovative strategies are available for the leptonic CP violation
searches.
Super Beams could reach a 3σ sensitivity in case of moderately large values of θ13 ,
basically in the range of discovery by the present generation of experiments. Difficult
to immagine further upgrades.
Innovative concepts like beta beams and neutrino factories can guarantee higher
sensitivities. More important, they can be upgraded to allow for future searches like
non-standard neutrino interactions, checks of the unitarity triangle, searches of CPT
violation. They require anyway R&D to be fully designed (EuroNu FP7 DS).
A beta beam setup can make use of existing CERN infrastructures like the PS and
the SPS. The injector side can be shared with nuclear physicists (Eurisol). The far
detector is the same detector aimed for proton decay searches and astrophysics
(Laguna FP7 DS). Under this perspective a super beam built around the SPL could
offer very interesting synergies.
A neutrino factory can offer the ultimate performances in neutrino oscillations and
can be seen as the first stage of a muon collider.
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