

Status of the OPERA experiment

Caren Hagner

BENE workshop 3.11.2004 Hamburg

Caren Hagner

OPERA Physics Goal

CNGS neutrino beam

OPERA

Neutrino Oscillations in Opera

$$L_{osz}(\text{in km}) = \frac{2.48 \cdot E(\text{in GeV})}{\Delta m^2(\text{in eV}^2)}$$

OPERA

CNGS: $L_{osz} \approx 17000 \text{ km}$ $E \approx 17 \text{ GeV},$ $? \text{ m}^2 \approx 2 \cdot 10^{-3} \text{ eV}^2$

<L/E> = 43 Km/GeV : « off peak »

P_{osc}~ (? m²)²

OPERA: **6200 n_m**CC+NC /year **19 n_t** CC/year (@ 2•10⁻³ eV²)

Δm^2 versus YEAR

I mpact both on $\nu_\mu {\rightarrow} \nu_\tau$ and $\nu_\mu {\rightarrow} \nu_e$ oscillation searches

CNGS neutrino beam

Caren Hagner

Civil engineering completed

Hadron stop installed

Detection of tau-neutrinos:

18% $t^- \rightarrow m^- + \overline{v}_m + v_t$ t-decay: t٠ ٧_t $t^- \rightarrow e^- + \overline{v}_e + v_t$ 18% >kink $t^- \rightarrow p^-(np^0) + v_t$ 48% W $t^- \rightarrow p^- p^- p^+ (np^0) + v_t$ 15% multi-prong Typical topology of t-decay: "Kink" in mm-range of vertex p,n v_t 1 mm Active target: 200.000 Lead-emulsion bricks = \overline{v}_{m} ca. 1.800 Tons t μ⁻ 56 lead sheets (1mm) 56 emulsion layers n, Hadrons Pb 8.3kg **Emulsion layers**

BENE workshop 3.11.2004 Hamburg

Caren Hagner

OPER A

Proposal: July 2000, installation at LNGS started in May 2003

Electronic detectors:

- trigger and localization of neutrino interactions
- muon identification and momentum/charge measurement

hereef

OPER /

Detector Assembly & Installation

OPERA

Spectrometer: Magnets

Total Fe weight 1 kton coil 12 Fe slabs per magnet side Fe RPC B= 1.55 T 0 (5 cm)22 gaps filled with slabs **RPC**S base $\boldsymbol{e}_{charge}^{miss} \approx (0.1 \div 0.3)\%$ **D**p/p = **20- 25%** µld > 95% (with Target Tracker)

Caren Hagner

Spectrometer: RPCs (Bakelite)

OPERA

Per plane: 816 Drifttubes Per SM: 4896 Drifttubes

Total (2 SM): ca. 10000 Drifttubes

First Precision Tracker Modules

OPERA

Caren Hagner

Target Tracker

- Neutrino interaction trigger
- Brick localization
- Muon tracking and I D

 XY planes, 7000m² in total 32256 Scintillator strips 6.86m x 2.6cm x1cm AMCRYS-H (Kharkov) + Kuraray WLS
 1000 MaPMT Hamamatsu 64channels

Construction of the modules in progress (8/week) Installation at LNGS since September 2004

Target Tracker Installation

OPERA

OPERA

Construction in progress Installation at LNGS : September 2004-December 2005

Tensioning from the bottom

Full size prototype

Caren Hagner

Lead Production & Fuji Emulsion

OPER /

Brick Assembly Machine (BAM)

OPER

Automatic Scanning: Nagoya and Europe R&D efforts Bari, Bern, Bologna, Lyon, Münster, Napoli, Roma, Salerno

European station

Final version of the european system ready and working at 20 cm²/hour (15 stations under installation)

Installation Summary

- OPERA installation is sticking to schedule
- Work in Hall C will slow down for 3 weeks because of safety work
 - -> this time will be used for completing the commissioning of the target installation withour changing the overall schedule
- Interference with BOREXINO still a big worry
 - PC loading station operating in Hall C
 - Opera isolation of PC leakage from BOREXINO
 - Independent fire extinguishing system

Under study by LNGS management

Milestones

Achieved :

- Refreshing facility installed
- First magnet completed
- Brick packaging decision
- BAM ordering
- Scanning speed 20cm²/h

Next Milestones 1. Target installation commissioning: sep 04 2. Emulsion delivery @ LNGS : oct 04 3. BMS automation validation : dec 04 4. BAM commissioning @ factory : feb 05 5. Start brick filling : sep 05

ID	Task Name	Duration	Start	Finish	2004	4			200)5		i	200	06	
220		452.00	Map 2/40/02	Thu 4/07/02	2	3	4	1	2	3	4	1	2	3	4
220	INSTALLATION IN GS EXPERIMENT MALL C	153.83 W	Mon 2/10/03	inu 4/2//06									O		
227	C R & ELECTRONIC ROOM	7 W	Fri 4/8/05	Mon 5/30/05				<	~						
233	BAM	13 w	Mon 6/13/05	Wed 9/14/05					~						
237	SPECTROMETERS (2 MAGNETS & RPC's)	134.03 w	Mon 2/10/03	Mon 11/14/05							>				
238	Preliminary working	15 w	Mon 2/10/03	Wed 5/28/03											
239	Veto plane mechanics	2 w	Fri 9/30/05	Fri 10/14/05											
240	Veto plane detector	4 w	Fri 10/14/05	Mon 11/14/05							-				
241	Magnet 1	58.35 w	Fri 5/30/03	Wed 8/11/04		•									
274	Magnet 2	95.15 w	Fri 5/30/03	Wed 5/25/05											
311	TARGET TRACKERS MOUNTING	72 w	Fri 5/14/04	Fri 11/4/05											
330	TARGET WALLS	73.94 w	Wed 8/11/04	Tue 3/7/06	100	. <u> </u>					<u> Sana</u>				
331	SM1	41.18 w	Wed 8/11/04	Fri 6/24/05		-						00000			
410	SM2	32.76 w	Fri 6/24/05	Tue 3/7/06					0						
489	XPC's & PRECISION TRACKERS	79.34 w	Mon 7/5/04	Tue 3/7/06	•							0			
490	XPC 1	20.88 w	Mon 7/5/04	Tue 11/30/04	0										
496	Precision tracker 1	46.24 w	Wed 3/16/05	Tue 3/7/06				~							
529	XPC 2	23.05 w	Fri 4/8/05	Wed 9/21/05				<		>					
535	Precision tracker 2	18 w	Mon 7/25/05	Tue 11/29/05						¢					
568	CABLING (detector to control room)	24.35 W	Wed 6/15/05	Tue 12/6/05					0		0				
571	MANIPULATORS	44.8 w	Wed 5/18/05	Thu 4/27/06					0				•		
572	SM1 cavern side	13 w	Wed 5/18/05	Fri 8/19/05					-	-					
578	SM1 corridor side	13 w	Thu 6/30/05	Fri 9/30/05					0						
585	SM2 cavern side	25.8 w	Fri 9/30/05	Thu 4/27/06						0			•		
589	SM2 corridor side	17.43 W	Wed 11/30/05	Thu 4/27/06							-		•		
594	COMMISSIONNING WITHOUT BRICKS	27.35 w	Wed 6/15/05	Tue 1/17/06					0			•			
597	ECC BRICK MANUFACTURING WITH BAM	43 w	Fri 9/30/05	Wed 8/30/06						3					
599	WALL BRICK FILLING (2b/min 8h/day)=960 bricks)	47.2 w	Mon 10/3/05	Fri 9/29/06		2	17	1/0	6	0					
600	SM1 brick filling	21.6 W	Mon 10/3/05	Fri 3/24/06		3	$I L^{i}$	+ /U	U	0	-				
602	SM2 brick filling	21.6 w	Thu 4/27/06	Fri 9/29/06		0			~				~		
604	COSMIC DATA TAKING WITH BRICKS	20 w	Mon 10/10/05	Tue 3/21/06		9	Z	9/0	0	2		_			
605	FULL DETECTOR COMPLETED	0 d	Fri 9/29/06	Fri 9/29/06										۲	
606	CNGS Beam delivery	0 d	vved 4/19/06	VVed 4/19/06									•		
607	OPERA RUNNING	94.6 w	Mon 5/3/04	Mon 4/24/06	~								0		
608	OPERA LNGS external building	60 W	Mon 5/3/04	Wed 7/27/05											
609	Emulsion processing laboratory	20 W	Thu 7/28/05	Fri 12/16/05						-					
610	Processing tests	12 W	Mon 1/9/06	Fn 3/31/06									20		
617	UPERA brick processing cycle	0.8 W	Wed 4/19/06	Mon 4/24/06								4	0		
612	Prist brick extraction	1.4	Thu 4/20/06	Thu 4/20/06									• 2		
614	Emulsion development	1.d	Fri 4/21/08	Fri 4/21/06											
615	Emulsion shipping to scapping labe	1.d	Mon 4/24/06	Mon 4/24/06									2		
010	Emulatori anipping to acarining idua	10	11011 4724700	141011 4724700											

General Planning

Channels considered at the time of the CNGS approval in 1999 :							
$\tau \rightarrow e$		(DIS+QE, long)	3.0%				
$ au ightarrow \mu$		(DIS+QE, long)	2.6%				
	Over	all efficiency	$\varepsilon = 5.6\%$				
	DIS long	QE long	DIS short	Overall*			
EII * B	K						
t®e	2.7	2.3	1.3	3.4			
t®m	2.4	2.5	0.7	2.8			
t®h	2.8	3.5	-	2.9			
Total	8.0	8.3	1.3	9.1 %			

* weighted sum on DIS and QE events

OPER /

Improvements under study:

use changeable sheet on the back side of the brick Brick finding strategy : +10% (signal/background ratio unchanged) channel t \rightarrow 3 prongs (1.0% eff, including BR 15%) : +10%

Number of Background Events

5 years running @ nominal intensity

(in red : possible improvements)	t→e		$t \rightarrow \mu$		t→h		tota	al
Charm background	.210	.117	.010	.007	.162	.160	.382	.284
Large angle μ scattering			.116	.023			.116	.023
Hadronic background			.093	.093	.116	.116	.209	.209
Total per channel	.210	.117	.219	.123	.278	.276	.707	.516

- Charm background:
 - New CHORUS data: cross section increased by 40%
 - Could be reduced with p/µ id by dE/dx by 40% (tests at KEK and PSI)
- Large angle μ scattering:
 - Upper limit from past measurement used so far
 - Calculations including nuclear form factors -> factor 5 less (tests 2004 in X5 beam with Si detectors)
- Hadronic background:
 - Estimates based on FLUKA standalone: 50% uncertainty
 - Comparison FLUKA with CHORUS data and GEANT4: reduce uncert. to ~15%

 v_t ? v_μ sensitivity

full mixing, 5 years run @ 4.5 x10¹⁹ pot / year

	signal (D m ² = 1.9 x 10 ⁻ ³ eV ²)	signal (D m ² = 2.4 x 10 ⁻³ eV ²)	signal (D m ² = 3.0x 10 ⁻³ eV ²)	BKGD
OPERA 1.8 kton fid.	6.6 <mark>(10)</mark>	10.5 (15.8)	16.4 (24.6)	0.7 <mark>(1.1)</mark>
+ brick finding + 3 prong decay	8.0 (12.1)	12.8 <mark>(19.2)</mark>	19.9 <mark>(29.9)</mark>	1.0 <mark>(1.5)</mark>
Background reduction	8.0 (12.1)	12.8 (19.2)	19.9 <mark>(29.9)</mark>	0.8 <mark>(1.2)</mark>

(...) with CNGS beam upgrade (X 1.5)

Discovery Potential (4s)

bbb 0 0 0 0 0 0 0 OPERA

v_e –appearance and $?_{13}$

Beam Systematics

- Assumed 5% error on the v_e flux (see A. Guglielmi talk at NOW04 for details on the CNGS systematics)
- With OPERA detector it is possible to (thanks to the spectrometer):
 - Measure the μ^{-} energy spectrum (at high-energy ν_{μ} from K⁺ decays dominate)
 - Measure the μ^+ energy spectrum (anti- ν_{μ} from K⁻ decays dominate)
- Good samples (O(1Kevts)) to cross-check the beam simulation
- Given the small number of expected events in OPERA (see later) the sensitivity to θ_{13} is dominated by the statistical fluctuations of the background
 - more pots are needed!!!

$v_{\mu} \rightarrow v_{e}$: selection efficiencies

		signal	t®e	n, CC	n _m NC	n _e CC beam
Location eff.	X	0.53	0.053	0.52	0.48	0.53
Total eff.	e	0.31	0.032	0.34x10 ⁻⁴	7.0x10 ⁻⁴	0.082

Expected signal and background assuming 5 years data taking with the nominal CNGS beam and $Dm_{23}^2=2.5x10^{-3} eV^2$, $sin^22q_{23}=1$

q ₁₃	signal	t®e	n _n CC	n _n NC	n _e CC beam
9 °	9.3	4.5	1.0	5.2	18
8°	7.4	4.5	1.0	5.2	18
7 °	5.8	4.6	1.0	5.2	18
5°	3.0	4.6	1.0	5.2	18
3 °	1.2	4.7	1.0	5.2	18

OPERA

bbb 0 0 0 0 0 0 0 OPERA

OPERA sin²2 θ_{13} as a function of the pots

neese and

hhhhaddaa

OPER A

On Peak / Off Peak

$$P_{n_{m} \rightarrow n_{e}} \cong \frac{\sin^{2} 2q_{13} \sin^{2} q_{23} \frac{\sin^{2} \left[\left[1 - \hat{A} \right] \Delta \right]}{\left(1 - \hat{A} \right)^{2}}} \qquad O_{1} \text{ leading term}$$

$$-a \sin q_{13} x \sin d_{CP} \sin \Delta \frac{\sin \left(\hat{A} \Delta \right) \sin \left[\left[1 - \hat{A} \right] \Delta \right]}{\hat{A} \qquad (1 - \hat{A})} \qquad O_{2}: 1 \text{ at osc. max}$$

$$+a \sin q_{13} x \cos d_{CP} \cos \Delta \frac{\sin \left(\hat{A} \Delta \right) \sin \left[\left[1 - \hat{A} \right] \Delta \right]}{\hat{A} \qquad (1 - \hat{A})} \qquad O_{3}: 0 \text{ at osc. max}$$

$$+a^{2} \cos^{2} q_{23} \sin^{2} 2q_{12} \frac{\sin^{2} \left(\hat{A} \Delta \right)}{\hat{A}^{2}} \qquad O_{4}: \text{ suppressed by } \alpha^{2}$$

$$a \equiv \frac{\Delta m_{21}^{2}}{\left| \Delta m_{13}^{2} \right|} x \equiv \cos q_{13} \sin 2q_{12} \sin 2q_{23} \approx O(1)$$

$$\hat{A} \equiv 2\sqrt{2}G_{F} n_{e} \frac{E}{\Delta m_{13}^{2}} \qquad \Delta \equiv \frac{\Delta m_{13}^{2} L}{4E}$$
The hierarchy among the different O terms depends on the "on peak"-"off peak" choice

BENE workshop 3.11.2004 Hamburg

OPERA

On Peak / Off Peak effect on CPV

 $Dm^2 > 0$

 $\mathbf{D}\mathbf{m}^2 < \mathbf{0}$

There are δ_{CP} values for which the sensitivity on θ_{13} is even better than the one computed in the 2-flavor approximation (δ_{CP} =0).

Notice the different behaviour on Δm^2 of the CNGS sensitivity \Rightarrow Possible measurement of the sign of ? m^2_{31} if T₁₃ is large !

- Despite difficulties at LNGS
 installation of OPERA experiment following schedule
- Completion of Supermodule 1 foreseen Sept 05
 Completion of SM2 Feb 06, SM2 filled in Sept 06
 OPERA needs physics run in 2006 to start physics program
- Efficiency and background based on robust numbers from previous experiments: improvements under study
- In order to cover the SuperK allowed range of ? m²:
 - At least nominal beam conditions (4.5 10⁹ pot/year) needed!
 - Even more protons on CNGS target are needed
 - either by increasing number of CNGS cycles
 - or (and) increasing proton intensity in the SPS
 - ? multi-turn ejection from PS to SPS is urgently needed

BENE workshop 3.11.2004 Hamburg

Caren Hagner

Check of Decay Detection Efficiency

Charm is a reference sample

CHORUS

- About 2000 neutrino induced events with an identified charmed particle in the final state have been detected in the emulsions of the CHORUS experiment
- The total charm cross-section and, separately the neutral and the charged ones, may be predicted to the OPERA case with an accuracy equal or better than 10%
- The error on the total charm production cross-section is expected to be dominated by systematics which at present are 10%

OPERA

- We assume 5000 DIS events per year
 - (shared mode, standard operation, no pot increase considered)
- 5% total charm cross-section
 - 250 charm events expected
 - About 100 ÷ 150 would be detected (assuming 50% eff.)

Efficiency Check II

All decay topologies (kink, multi-prong) can be analysed separately

Already after 1 year data taking

(i.e. precision measurements for about 100-150 charm candidates) the efficiency can be estimated with an accuracy better than 20%

• After 3 years of such a dedicated study

the precision will be limited to ~10%

by the error on the predicted number of charm events

(i.e. systematic error on the CHORUS cross-section)

IN OPERA THE CRUCIAL TAG FOR A TAU CANDIDATE IS THE DETECTION OF A DECAY TOPOLOGY

- A minimum bias sample has to be carefully scanned in order to check the reliability of the Monte Carlo used to define the kinematical cuts in the hadronic channel
- NB The kinematical analysis in OPERA is not a crucial item, unlike in the NOMAD experiment (see Table)

	OPERA	NOMAD	OPERA	NOMAD
	n _NC	n NC	t®h	t®h
ekin @1 ^{ry} vtx	0.20	2.0×10^{-6}	0.65	0.021
P_t kink > 0.6 GeV/c	8.4×10^{-5}	_	0.28	-
Total	1.7×10^{-5}	2.0×10^{-6}	0.18	0.021
	Reje	ection	effi	ciency

How to check the reliability of the kinematical cuts? (II)

- The Monte Carlo used in OPERA has been carefully validated with data by the NOMAD Collaboration: Kinematics and dynamics of neutrino interactions well modeled
- NOMAD had C target (light material) while in OPERA has Pb (heavy material), but the used model does not depend on the nucleus
- We plan to precisely scan a minimum bias sample of about 1000 located neutrino interactions :

(~750 CC (~4% stat $\Delta \epsilon$), ~250 NC (~6% stat $\Delta \epsilon$))

to fine tune the intranuclear interaction model in describing the interactions on lead

Brick Wall Installation

Tendering (start) Tendering (end) Production contracts signed First wall prototype built First wall delivered at LNGS Last wall delivered at LNGS MAY 2003 OCT 2003 JAN 2004 JUL 2004 OCT 2004 JUN → DEC 2005

Reference marks positioning Rails installation/alignement Walls installation/alignement Rails installation/alignement	(for alignment) 1 st SM 1 st SM 2 nd SM	\checkmark	JUNE 2004 AUGUST 2004 OCT 04 \rightarrow JUN 05 JUN/JUL 2005
Walls installation/alignement	2 nd SM		JUL 05 \rightarrow FEB 06