

Neutrino Factory and Beta Beam: News from APS Neutrino Study

Michael S. Zisman Center for Beam Physics Lawrence Berkeley National Laboratory

> BENE Meeting-DESY November 3, 2004

November 3, 2004

Introduction

- Active Neutrino Factory design and R&D groups already exist
 - Neutrino Factory and Muon Collider Collaboration (U.S.)
 - European Neutrino Group (EU)
 - Japanese Neutrino Group (Japan)
- Beta beam effort mainly in Europe
- APS Study WG initial goals
 - NF: build on existing work and document for broader neutrino-science community
 - BB: understand existing work, evaluate required R&D program, and consider possible U.S. implementation

Neutrino Factory Ingredients

- Neutrino Factory comprises these sections
 - Proton Driver

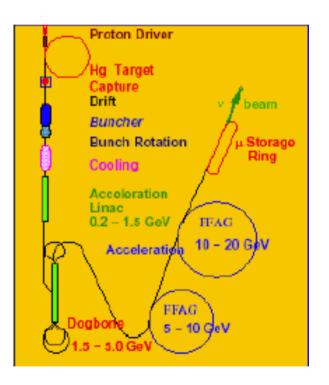
• primary beam on production target

- Target, Capture, and Decay

 $_{o}\, \text{create}\,\, \pi \text{;}\,\, \text{decay into}\,\, \mu$

- Bunching and Phase Rotation \circ reduce $\triangle E$ of bunch

- Cooling


• reduce transverse emittance

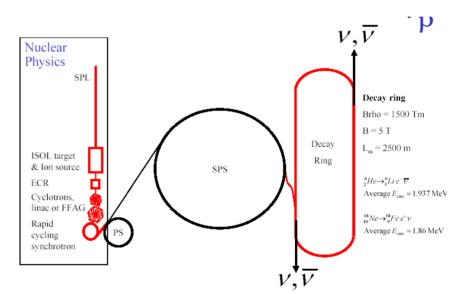
— Acceleration

 $_{\circ}\,130$ MeV $\rightarrow\,20$ GeV

- Storage Ring

• store for 500 turns; long straight

<u>Very</u> schematic



Beta Beam Ingredients

Beta Beam facility comprises these sections

- Proton Driver
 - SPL (2.2 GeV; 4 MW)
- ISOL Target
 - spallation neutrons or direct protons
- Ion Source
 - pulsed ECR
- Acceleration
 - linac, cyclotron, FFAGPS, SPS
- Decay Ring
 - SPS size; 2500 m straight

Comparison of Schemes

- \cdot Most design aspects common to both NF and BB
- NF requires one more step than BB facility — cooling of muon beam
- \cdot NF likewise requires one step less
 - ionization and bunching of beta-unstable isotopes $% \left({{{\left[{{{\left[{{{\left[{{{\left[{{{c_1}}} \right]}} \right]}$
- Both NF and BB place a premium on rapid acceleration
 - BB less so than NF

Neutrino Factory Study I

- Study I (1999—2000) instigated by Fermilab
- Focus on feasibility
 - first attempt to specify NF from end to end
 - approach: base design on (reasonably) well-understood technologies
 - no attempt to optimize either cost or overall performance
- Proper approach at the time, as feasibility was most at issue
- Led to predictable result: feasibility established, performance poor, costs relatively high

Neutrino Factory Study II

- Study II (2000—2001) collaboration of MC, BNL
- Goal: maintain convincing feasibility, improve performance substantially

— optimizing cost again given lower priority

- Result: performance 5x Study I
 1.2 x 10²⁰ vs. 2.5 x 10¹⁹ ve per year (10⁷ s) per MW
- Cost about 75% of Study I

- due to choice of 20 GeV rather than 50 GeV

Lessons Learned

- Necessary to optimize "front end" (decay, bunching, phase rotation, cooling)
- Simulate entire concept before starting detailed engineering (develop self-consistent solution)
- Work as partners with engineers to converge on buildable design
- Facility is costly, O(\$2B)
- Increasing proton driver power is cost-effective way to get higher performance *if target does not limit this parameter*

- Already studied portions of NF design space representing
 - low performance, high cost
 - high performance, high cost
- Need to study high performance, optimized cost
- Previous work gave good idea where to begin
 - replace induction linacs with RF bunching and phase rotation
 - replace RLA with FFAG ring or very rapidly cycling synchrotron
 - examine trade-offs between amount of cooling and downstream acceptance

 ${\scriptstyle o}$ also between beam intensity and detector size

Why These Choices?

Areas selected could markedly reduce facility cost

- RF bunching and phase rotation section shorter than induction linac version, and uses less expensive components
 - original version took 25% of total cost
 - $_{\circ}\,\text{new}$ scheme keeps both μ^{-} and μ^{+} simultaneously
- RLAs were major cost (23%) of Study II design
 - large aperture FFAG magnets accommodate energy swing without need for separate arcs
 - avoids large-aperture splitter-recombiner magnets
- increased acceptance downstream should allow reduction in cooling requirements (20% of facility cost)
- Note that replacement systems are not free!

Beta Beam Issues

 Beta beam facility based on production, acceleration and storage of light, beta-unstable isotopes

— use ⁶He for
$$\beta^-$$
 ($t_{1/2}$ = 0.8 s)

- use ¹⁸Ne for β^+ ($t_{1/2} = 1.7$ s)
- Several technical challenges that would benefit from further study
 - production target and ion source to give desired intensity
 - multiple targets needed for ¹⁸Ne intensity of 1.3 × 10¹³
 pulsed ECR source needed to give bunches of fully stripped ions
 - space-charge blowup and radiation losses in accelerator chain
 - stacking multiple turns in decay ring

• Generalize scenario beyond CERN site-specific version November 3, 2004 BENE talk - Zisman

BERKELEYLAB

🦉 Working Group Specific Goals

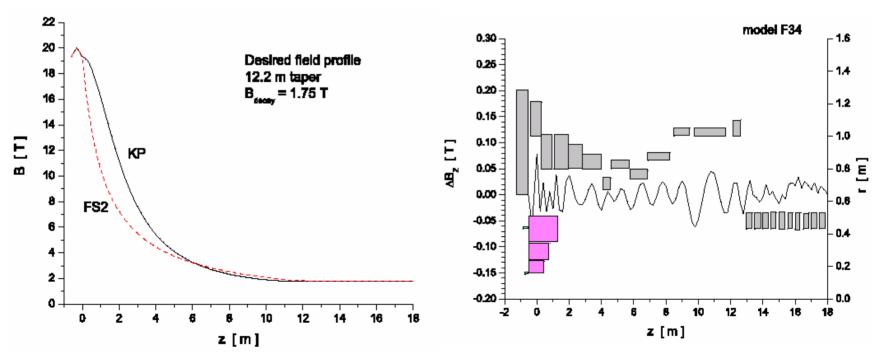
For NF, examine approaches to reduce facility cost without sacrificing performance

 carry out end-to-end simulations of entire complex and demonstrate acceptable performance

- For BB, aspire to more modest goals
 - assess status of CERN-based design
 - identify and understand outstanding technical issues and time scale for dealing with them
 - consider implications of U.S. site
- In practice, we came closer to NF goals than BB goals

Neutrino Factory Design Progress

- \cdot Took advantage of participation of MC experts
 - involved in both of the earlier Feasibility Studies
- Redesigned FS2 Neutrino Factory \Rightarrow "FS2a"
 - Capture, Bunching and Phase Rotation, Cooling Acceleration
 "that's where the money is"
 - about 3/4 of NF cost is here
 - ${}_{\circ}\,$ goal: develop cost-effective design based on new ideas
 - get a rough idea of cost savings wrt FS2
 - no work on Target or Storage Ring...yet



Capture Section

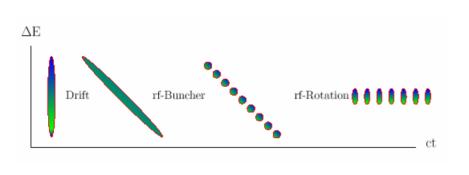
- Reoptimized capture section magnetic profile
 - not much different, but gained 10% more intensity

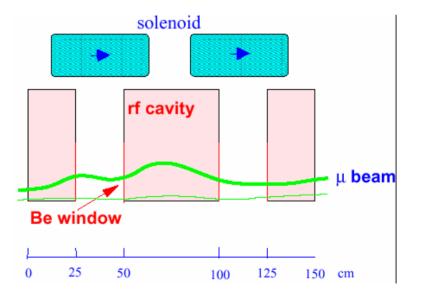
- magnetic field tapers from 20 T to 1.75 T (1.25 T in FS2)

November 3, 2004

Buncher and Phase Rotation

FS2: induction linacs to phase rotate, rf to bunch

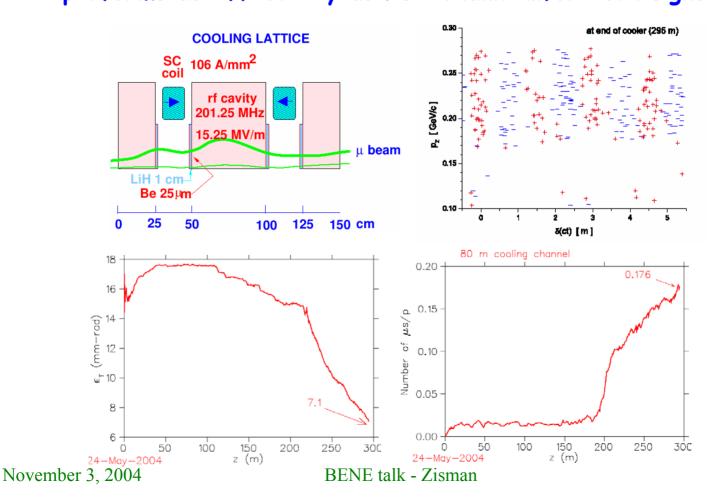

- worked well, but relatively expensive


 \circ keeps only one sign muon

•FS2a: rf to bunch, then rf to phase rotate

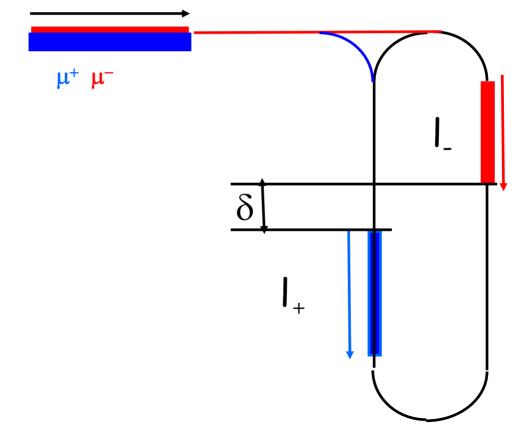
- performance less good, but less expensive

 $_{\circ}\, {\rm keeps}\,\, {\rm both}\,\, \mu^{\scriptscriptstyle +}\,\, {\rm and}\,\, \mu^{\scriptscriptstyle -}$



Cooling

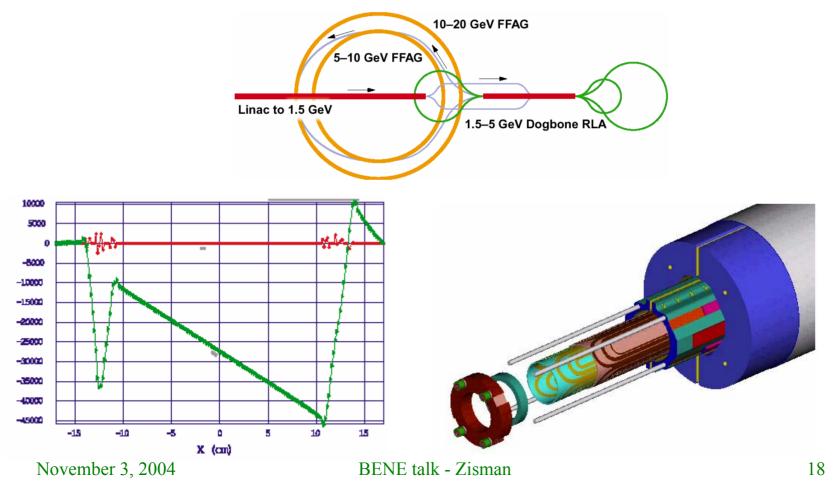
- Cooling channel simplified considerably cf. FS2
 - shorter, fewer magnets, fewer rf cavities, simpler absorbers
 no LH₂; replace with LiH
 - performs as effectively as FS2 channel...for both signs



Using Both Signs

- Two issues (Blondel)
 - timing to distinguish $\mu^{\scriptscriptstyle -}$ and $\mu^{\scriptscriptstyle +}$ (δ \geq 100 ns)
 - possible need for two near detectors (or use stacked rings if that is cheaper)

Acceleration

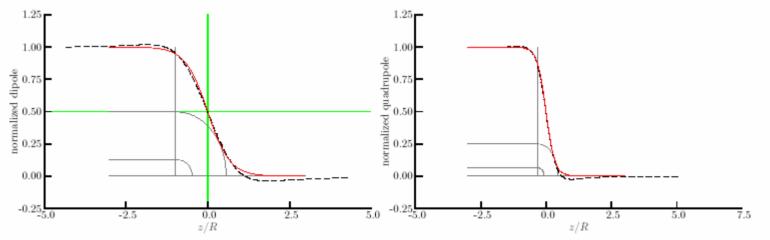


FFAGs are cost-effective for accelerating muons

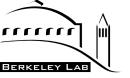
— use eclectic mix of machines to accelerate to 20 GeV

Inac, dogbone RLA, 2 FFAGs...something for everybody!

- SC combined-function magnet appears suitable



FFAG Rings


- FFAG scheme being developed by Berg, Johnstone, Trbojevic, Palmer, Keil, Sessler, Koscielniak,...
 - use combined-function magnets in doublet or triplet arrangement

 $\begin{array}{c} QF \\ B_0 < 0 \\ B_0 > 0 \end{array}$

November 3, 2004

Beta Beams in the Colonies

 There are scientific benefits to a higher energy Beta Beam facility than can be provided at CERN

- γ_{max} for ^{6}He at SPS \approx 150; twice that is preferred

Looked RHIC and Tevatron; Tevatron is better

Machine	Proton kinetic energy (GeV)	$\gamma(p)$	$\gamma(^{6}\mathrm{He}^{2+})$	$\gamma(^{18}\mathrm{Ne}^{10+})$
FNAL Booster	8	9.5	3.3	5.4
Main Injector	150	161	64	89
Tevatron	980	1045	349	581
BNL Booster	2	3.1	1.4	1.9
AGS	30	34	11	19
RHIC	250	268	89	149

Machine	Ramp time (s)	${}^{6}\mathrm{He}^{2+}$ loss (%)	18 Ne ¹⁰⁺) loss (%)
FNAL Booster	0.03	2	1
Main Injector	0.7	2	1
Tevatron	17	10	3
BNL Booster	0.1	14	5
AGS	0.5	9	3
RHIC	100(40)	91(62)	50(24)

Neutrino Factory R&D

Ongoing program in US carried out by MC

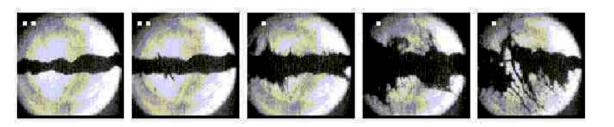
— major programs in cooling, targetry, acceleration

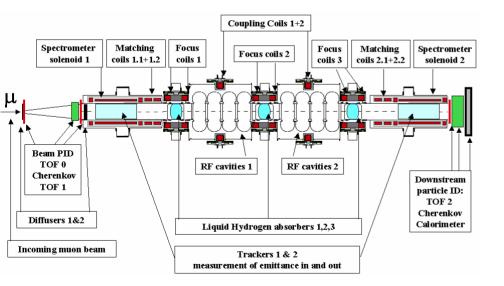
• MUCOOL: testing LH2 absorbers, high-gradient ncrf

- high gradient does not coexist graciously with $\mathsf{B}_{\mathsf{sol}}$

• Targetry: testing solid and Hg jet in proton beam

• Acceleration: developing high-gradient scrf, studying FFAGs


- new initiatives are planned and ready to launch


MICE: demonstrate ionization cooling with realistic hardware (have scientific approval from RAL)
Targetry: test Hg jet with 15-T solenoid at CERN
Acceleration: build electron model of non-scaling FFAG

Neutrino Factory R&D - II

Beta Beam R&D Issues

- No work ongoing in US except what was done for this Study
- Issues (our view)
 - target to produce ¹⁸Ne must tolerate intense beam
 - collection efficiency from target to remote ion source
 - ion source capability to provide required charge state and bunching; multiple targets proposed for ¹⁸Ne
 - decay losses in acceleration chain and storage ring
 - beam manipulations if both ⁶He and ¹⁸Ne stored simultaneously

Cost Savings

- Not practical to do a bottom-up costing of our new design so we scaled from FS2
 - we have done well with the major cost items, but savings on the lesser items are not yet exploited
 - these are hardware-only costs (no ED&I, burden, escalation, contingency)

	All	No PD	No PD & Tgt.
	(\$M)	(\$M)	(\$M)
FS2	1832	1641	1538
FS2a-scaled (%)	67	63	60

The Report

BNL-72369-2004, FNAL-TM-2259, LBNL-55478

Neutrino Factory and Beta Beam Experiments and Development

C. Albright,¹ V. Barger,² J. Beacom,¹ J.S. Berg,³ E. Black,⁴ A. Blondel,⁵ S. Bogacz,⁶ S. Brice,¹ S. Caspi,⁷ W. Chou,¹ M. Cummings,⁸ R. Fernow,³ D. Finley,¹ J. Gallardo,³ S. Geer,¹ J.J. Gomez-Cadenas,⁹ M. Goodman,¹⁰ D. Harris,¹ P. Huber,¹¹ A. Jansson,¹ C. Johnstone,¹ S. Kahn,³ D. Kaplan,⁴ H. Kirk,³ T. Kobilarcik,¹ M. Lindner,¹¹ K. McDonald,¹² O. Mena,¹ D. Neuffer,¹ V. Palladino,¹³ R. Palmer,³ K. Paul,¹⁴ P. Rapidis,¹ N. Solomey,⁴ P. Spampinato,¹⁵ D. Summers,¹⁶ Y. Torun,⁴ K. Whisnant,¹⁷ W. Winter,¹¹ M. Zisman,⁷ and The Neutrino Factory and Muon Collider Collaboration ¹Fermi National Accelerator Laboratory, Batavia, IL 60510, USA ²Dept. of Physics, University of Wisconsin, Madison, WI 53706, USA ³Brookhaven National Laboratory, Upton, NY 11973, USA ⁴Illinois Institute of Technology, Physics Department, Chicago, IL 60616, USA ⁵DPNC, Section de Physique, Université de Genève, Switzerland ⁶Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606, USA ⁷Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ⁸Northern Illinois University, DeKalb, IL 60115, USA ⁹Departamento de Física Teórica and IFIC. Universidad de Valencia, E-46100 Burjassot, Spain ¹⁰Argonne National Laboratory, Argonne, IL 60439, USA ¹¹Technischen Universität München, Garching, Germany ¹²Princeton University, Joseph Henry Laboratories, Princeton, NJ 08544, USA ¹³INFN Napoli e Università Federico II, Napoli, Italy ¹⁴University of Illinois at Urbana-Champaign, Urbana-Champaian, IL 60115, USA ¹⁵Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA ¹⁶University of Mississippi, Oxford, MS 38677, USA ¹⁷Iowa State University, Ames, IA 50011, USA (Dated: July 30, 2004)

http://www.cap.bnl.gov/mumu/study2a/REPORT/NF-BB-WG.pdf

November 3, 2004

- ongoing Neutrino Factory R&D in the US be given continued encouragement and financial support
 - HEPAP suggested \$8M per year; much less being provided
- US funding agencies find a way to support MICE, in collaboration with EU and Japanese partners

• experiment has scientific approval to run at RAL

 support be found to ensure that the international Targetry R&D experiment proceeds as planned

o proposal submitted to CERN, awaiting response

 a World Design Study, aimed at solidly establishing the cost of a cost-effective Neutrino Factory, be supported at the same level as FS1 and FS2

o planning for this is already under way

progress on Beta Beam development be monitored, and that US colleagues cooperate fully with EU counterparts in assessing how US facilities might play a role in such a program

• no significant US R&D effort due to limited resources

Status of Study

- Completed in late June, 2004
- Since then, we have worked to produce final summary report
 - report contains overview of physics opportunities, overall recommendations, and summaries of WG recommendations
 - overall recommendations are consistent with WG recommendations...but not identical
 - many more people to satisfy in main report!
- Writing subcommittee chaired by Hamish Robertson
 - went through text line by line...and sometimes word by word
 - how many physicists does it take to write a Neutrino study report?
- Report presented to DOE/NSF October 25

Summary

- APS Neutrino Study has outlined breadth and scientific importance of neutrino science program
- Importance of adequately-funded accelerator R&D program is indicated
 - importance of staying abreast of European BB effort likewise mentioned
- One issue: U.S. community is not yet unequivocally convinced NF or BB facility is needed

— facilities still viewed by many as a back-up option to Superbeams

- $\boldsymbol{\cdot}$ We need to make the scientific case stronger
 - $-\mbox{ cost matters},$ and efforts to reduce price tag will help