

Enrique Fernández Martínez Departamento de Física Teórica and IFT Universidad Autónoma de Madrid

Mainly based on a collaboration with A. Donini, P. Migliozzi, S. Rigolin, L. Scotto Lavina hep-ph/0406132

- Introduction
 - Oscillation parameters
 - The eightfold degeneracy
- Measurements with the CERN low-*g* b and SPL SB
 - Appearance channel
 - Disappearance channel
- Measurements with the T2K PHASE 2 SB
 - Appearance channel
 - Disappearance channel
- Conclusions

- Only evidence for physics beyond SM
- Neutrino masses and mixing add to the flavour puzzle
 - 7 or more new parameters, only 4 measured yet
- More open questions than answers
- Mass scale and mass hierarchy?
 - Normal or inverted?
 - Hierarchical or Degenerate?
- Mixings?
 - Why so large angles compared to CKM?
 - Is there CP violation in the leptonic sector?
- Dirac or Majorana?
 - Can Majorana neutrinos explain baryon asymmetry?

The oscillation parameters

- What we already know
 - Solar sector $\begin{cases} \Delta m_{12}^2 = 8.2_{-0.3}^{+0.3} \cdot 10^{-5} \,\text{eV}^2 \\ \tan^2 \boldsymbol{q}_{12} = 0.39_{-0.04}^{-0.05} \\ \end{bmatrix}$ • Atm sector $\begin{cases} \left| \Delta m_{23}^2 \right| = 2.2_{-0.4}^{+0.6} \cdot 10^{-3} \,\text{eV}^2 \\ \tan^2 \boldsymbol{q}_{23} = 1_{-0.26}^{+0.35} \end{cases}$
- What we still don't know
 - **q**₁₃ < 11.7°
 - δ_{cp}
 - Mass hierarchy $s_{atm} = sign(\Delta m_{23}^2)$
 - Octant of q_{23} $s_{oct} = sign[tan(2q_{23})]$

The eightfold degeneracy

 Eight different solutions, the true one and 7 clones

J. Burget-Castell *et al.* hep-ph/0103258 H. Minakata *et al.* hep-ph/0108085 G. L. Fogli *et al.* hep-ph/960441 V. Barger *et al.* hep-ph/0112119

$$\boldsymbol{n}_{e} \rightarrow \boldsymbol{n}_{e}, \boldsymbol{n}_{m}$$

L=130Km $\boldsymbol{n}_{m} \rightarrow \boldsymbol{n}_{m}, \boldsymbol{n}_{e}$

b -Beam	<i>l</i> ⁻	l^+	Super-Beam	l ⁻	l^+
No osc. N_e	133205	19557	No osc. $N_{m{m}}$	24245	25467
$N_e(q_{13}=10^{\circ})$	86910	11727	$N_{m}(q_{13}=10^{\circ})$	1715	1585
$N_{m}(q_{13}=10^{\circ})$	2444	463	$N_e(q_{13}=10^{\circ})$	1148	1002
Beam Bck.	0	0	Beam Bck.	92	110
Detector Bck.	360	1	Detector Bck.	24	56

 $10 \text{yr} \boldsymbol{n}_e + 10 \text{yr} \boldsymbol{n}_e$ exposure with a 440Kt water cerenkov detector for the βB $2yrn_m + 8yr \bar{n}_m$ exposure with a 440Kt water cerenkov detector for the SB E/L sets $\boldsymbol{n}_{m} \rightarrow \boldsymbol{n}_{e}, \boldsymbol{n}_{t}$ at a maximum but $\boldsymbol{n}_{m} \rightarrow \boldsymbol{n}_{m}$ at a minimum

• Fits for 90% CL for $q_{13} = 2^{\circ}$, 8° and $d = 45^{\circ}$, -90°

- Backgrounds quoted before and systematic error of 5% included
- SB better for large q_{13}

A. Donini et al. hep-ph/0406132

- Fits for 90% CL for $q_{13} = 2^{\circ}$, 8° and $d = 45^{\circ}$, -90°
- Many clones remain unsolved
- The discrete parameters s_{oct} and s_{atm} are not measured

CERN SB and **b**B fluxes at Frejus

 n_e flux from ¹⁸Ne decay at $\gamma = 100 \langle E_n \rangle = 0.37 GeV$ n_m flux from p^+ decay $\langle E_n \rangle = 0.27 GeV$ \overline{n}_e flux from ⁶He decay at $\gamma = 60$ $\langle E_{\overline{n}} \rangle = 0.23 GeV$ \overline{n}_m flux from p^- decay $\langle E_{\overline{n}} \rangle = 0.25 GeV$

SB fluxes courtesy of Gilardoni

- Computed for 90% CL and 5% systematic error
- Sensitivity between 1° and 0.5° for both experiments
- Best sensitivity for $d = \pm 90^{\circ}$ where there is a maximum of n, \overline{n}
- The combined sensitivity is not significantly improved

The **b**B disappearance channel

Fits for 90% CL and systematic error = 0, 2 and 5%

- Dashed lines = sign clone. Not relevant
- $q_{13} = 2^{\circ}$ left, $q_{13} = 8^{\circ}$ right
- It is only useful for large values of q_{13} and if sys < 2%

S. Rigolin NOW 2004

The **b**B channels combined

- Fits for 90% CL
- Systematics of 5% in the appearance channel and 2% in disappearance

- Fits for 90% CL and systematic error = 2%
- Left side for $\boldsymbol{q}_{13} = 0^{\circ}$, right side $\boldsymbol{q}_{13} = 8^{\circ}$, $\boldsymbol{d} = 0^{\circ}$
- The sign degeneracy doubles the error on Δm_{23}^2
- But combined with appearance it can reduce this degeneracy

S. Rigolin NOW 2004

The SB channels combined

- Fits for 90% CL and systematics of 5% in appearance and 2% in disappearance
- The sign degeneracy is very constrained
- 4 parameter fits on the way

D. Meloni ECT Trento

 $2yrn_m + 8yr\overline{n_m}$ exposure with a 440Kt water cerenkov detector for the T2K

The T2K appearance channel

• Fits for 90% CL for $q_{13} = 2^{\circ}$, 8° and $d = 45^{\circ}$, -90°

- Backgrounds quoted before and systematic error of 5% included
- Very similar to the CERN SB but slightly worse for small q_{13}

The T2K disappearance channel

Fits for 90% CL and systematic error = 2%

- The sign degeneracy doubles the error on Δm_{23}^2
- T2K now worse, will improve with binning information

- The combination of low-γ bB and SB can help to solve some of the degeneracies but at least one of each kind remains. No synergy between them, only increased statistics
- The disappearance channel in the bB is only useful if q₁₃ is not too small and for very small unrealistic systematic errors
- The disappearance channel in the SB more useful. Gives independent measure of q_{23} and Δm_{23}^2 Combined with appearance it could help to solve the sign degeneracy
- SB better by itself than bB and not much improvement when combined

Conclusions and Outlook

- The SB measures q_{23} and Δm_{23}^2 apart from q_{13} and δ
 - 3 or 4 parameter fit necessary for correct analysis
- The low-*g* **b**B is not very useful but it can be improved:
 - New ions like ⁸Li can increase the statistics and change the *n* energy so that the complementarity with the SB increases
 - Higher g scenarios with wider n spectra allow binning in E which solves many degeneracies J. Burguet-Castell et al. hep-ph/0312068
 - Very high g also adds the silver channel $\mathbf{n}_e \rightarrow \mathbf{n}_t$
- The mass hierarchy can only be measured through matter effects at very long baselines
 - Atmospheric *n* could be used to measure the mass hierarchy with large enough detector

 $n_m \rightarrow n_m, n_e$ L=295Km $5x10^{11}$ T2K 1 l^+ OA2° ν_{μ} $4x10^{11}$ dǿ (m⁻²GeV⁻¹yr⁻¹) dE 293977 387811 No osc. N_m $\bar{\nu}_{\mu}$ \sim $3x10^{11}$ 62314 44851 $N_{m}(q_{13}=10^{\circ})$ $2x10^{11}$ 7457 9680 $N_e(q_{13}=10^{\circ})$ 1×10^{11} Beam Bck. 731 497 Detector Bck. 1526 1857 0.5 1.5 2.5 1 2 3 E_{ν} (GeV)

2° off axis

$\underline{\mathbf{n}}_{\mathbf{m}}$ flux from \mathbf{p}^{+} decay $\langle E_{\mathbf{n}} \rangle = 0.74 GeV$	No E hinning
$\boldsymbol{n}_{\boldsymbol{m}}$ flux from \boldsymbol{p}^{-} decay $\langle E_{\bar{\boldsymbol{n}}} \rangle = 0.73 GeV$	

 $2yrn_m + 8yr \overline{n}_m$ exposure with a 440Kt water cerenkov detector for the T2K

- Computed for 90% CL and 5% systematic error
- Both experiments can distinguish $d > 30^{\circ}$ if $q_{13} > 1^{\circ}$
- $d = \pm 90^{\circ}$ can be distinguished from 0° for $q_{13} > 0.5^{\circ}$
- The combined sensitivity is not significantly improved

• For $\boldsymbol{d} = 0^{\circ}$ and $\boldsymbol{q}_{13} = 10^{\circ}$

- Different cross-sections can differ up to a factor of 2 below 0.5GeV (at 0.2GeV)
- Comparison of LIPARI (black) and NUANCE (red) crosssection
- We used the LIPARI crosssection that takes into account nuclear effects important below 0.2GeV
- The cross-sections will be measured by the experiments

The **b**B channels combined

- Fits for 90% CL
- Systematics of 5% in the appearance channel and 0.6% in disappearance