

Leptonic Mixing: beam/baseline options The garden of forking paths

A. Donini

andrea.donini@romal.infn.it

Universidad Autonoma Madrid

The Flavour Problem

We have three families of elementary particles, with masses:

 $m_{\nu} \ge 0.05 \,\mathrm{eV} \to m_t = 178 \,\mathrm{GeV}$

A thirteen order of magnitude hierarchy!

For a Standard Model of Particle Masses, we must understand the FLAVOUR MIXING both in quark and lepton sectors

Measure of ALL parameters in the Mixing Matrices!

The leptonic mixing matrix, now

- $|\Delta m^2_{atm}| = (2.6 \pm 0.4) \cdot 10^{-3} \,\mathrm{eV}^2$
- $\Delta m^2_{sol} = (8.3 \pm 0.4) \cdot 10^{-5} \text{ eV}^2$
- $\sin^2 \theta_{23} = (0.33 0.68)$ at 3σ
- $\sin^2 \theta_{12} = (0.22 0.38)$ at 3σ
- $\sin^2 \theta_{13} \le 0.041$ at 3σ
- The sign of Δm_{atm}^2
- The θ_{23} -octant
- Is θ_{13} different from zero?
- Is δ different from zero?

Neutrino sources

- Natural sources:
 - **\star** The Sun $\longrightarrow \nu_e$
 - \bigstar Cosmic rays $\longrightarrow \nu_e, \nu_\mu$
 - **★** Supernovae and relic SNs $\longrightarrow \nu_e, \nu_\mu, \nu_\tau$
 - **\bigstar** Geoneutrinos $\longrightarrow \nu_e$

Neutrino sources

- Natural sources:
 - **\star** The Sun $\longrightarrow \nu_e$
 - **★** Cosmic rays $\longrightarrow \nu_e, \nu_\mu$
 - **★** Supernovae and relic SNs $\longrightarrow \nu_e, \nu_\mu, \nu_\tau$
 - **★** Geoneutrinos $\longrightarrow \nu_e$
- Man-made sources:
 - \triangle Reactors: $n \rightarrow pe \ \overline{\nu}_e$
 - \triangle Conventional beams: $\pi^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}(\bar{\nu}_{\mu})$
 - \triangle Neutrino Factory: $\mu^{\mp} \rightarrow e^{\mp} \nu_{\mu}, \bar{\nu}_{e}(\bar{\nu}_{\mu}, \nu_{e})$
 - \triangle Beta beam: ⁶ He $\rightarrow \bar{\nu}_e$, ¹⁸ Ne $\rightarrow \nu_e$

Foreseen bounds on $heta_{13}$

EXP	$ heta_{13}$	$\sin^2(2\theta_{13})$	$\sin^2 heta_{13}$
Global Fit	11.5°	0.157	0.041
BEAMS			
K2K	?	?	?
MINOS	6°	0.04	0.01
	$\rightarrow 8^{\circ}$	ightarrow 0.08	$\rightarrow 0.02$
CNGS	5°	0.03	0.008
	$ ightarrow 7^{\circ}$	$\rightarrow 0.06$	$\rightarrow 0.015$

 $P_{\mu\mu} \simeq 1 - \sin^2(2\theta_{23}) \sin^2\left[\frac{\Delta_{atm}L}{2}\right] + \mathcal{O}\left[\left(\frac{\Delta_{sol}}{\Delta_{atm}}\right) \sin\theta_{13}\cos\delta\right]$ Sensitivity loss due to $(\theta_{13} - \delta)$ -correlations

EXP	$ heta_{13}$	$\sin^2(2\theta_{13})$	$\sin^2 heta_{13}$
Global Fit	11.5°	0.157	0.041
REACT.			
Japan	4.5°	0.025	0.006
USA	3.5°	0.015	0.004
EU (D-CHOOZ)	5°	0.030	0.008

$$P_{ee} \simeq 1 - \sin^2(2\theta_{13}) \sin^2\left[\frac{\Delta_{atm}L}{2}\right] + \mathcal{O}\left[\left(\frac{\Delta_{sol}}{\Delta_{atm}}\right)^2\right]$$

no sensitivity loss due to $(\theta_{13} - \delta)$ -correlations

Foreseeable bounds on θ_{13} (2)

EXP	$ heta_{13}$	$\sin^2(2\theta_{13})$	$\sin^2 heta_{13}$
Global Fit	11.5°	0.157	0.041
SBEAMS			
JHF-I	2.2°	0.006	0.0015
(T2K)	$ ightarrow 3.3^{\circ}$	ightarrow 0.013	$\rightarrow 0.0030$
NUMI-OA	2°	0.005	0.0010
$(NO\nu A)$	$\rightarrow 3.5^{\circ}$	$\rightarrow 0.015$	$\rightarrow 0.0040$

Sensitivity loss due to $(\theta_{13} - \delta)$ -correlations

After the wave of conventional beams and first generation superbeams, and of high-power reactors experiments, we will know something more on the PMNS matrix:

▷ mass differences Δm_{atm}^2 , Δm_{sol}^2 at some %;

After the wave of conventional beams and first generation superbeams, and of high-power reactors experiments, we will know something more on the PMNS matrix:

▷ mass differences Δm_{atm}^2 , Δm_{sol}^2 at some %;

▷ mixing angles θ_{12} , θ_{23} at some %;

After the wave of conventional beams and first generation superbeams, and of high-power reactors experiments, we will know something more on the PMNS matrix:

- ▷ mass differences Δm_{atm}^2 , Δm_{sol}^2 at some %;
- ▷ mixing angles θ_{12} , θ_{23} at some %;
- ▷ the value of θ_{13} , if large;

After the wave of conventional beams and first generation superbeams, and of high-power reactors experiments, we will know something more on the PMNS matrix:

- ▷ mass differences Δm_{atm}^2 , Δm_{sol}^2 at some %;
- ▷ mixing angles θ_{12} , θ_{23} at some %;
- ▷ the value of θ_{13} , if large;
- ▷ the sign of Δm_{23}^2 , if lucky.

After the wave of conventional beams and first generation superbeams, and of high-power reactors experiments, we will know something more on the PMNS matrix:

- ▷ mass differences Δm_{atm}^2 , Δm_{sol}^2 at some %;
- ▷ mixing angles θ_{12} , θ_{23} at some %;
- ▷ the value of θ_{13} , if large;
- ▷ the sign of Δm_{23}^2 , if lucky.

Precision measurements of LEPTONIC MIXING will start with the next-to-next generation experiments, using Neutrino Factory and/or Beta Beam. However.... DESY-Hamburg, November 3rd, 2004 – p.8/30

An intermediate phase?

After T2K and NO ν A, we will face a forking path:

- ★ $\nu_{\mu} \rightarrow \nu_{e}$ oscillation has been observed! A good option: increase detector mass, same source: T2-HK or SPL+UNO (really a good option?)
 - No signal has been observed: θ₁₃ ≤ 3° − 4° ! Go to new sources: Neutrino Factory or the Beta-Beam.

I will use the CERN SPL project to illustrate the problems we face to measure (θ_{13}, δ) in the intermediate phase. T2-HK gives similar results.

Appearance Signal at a SB

$$\pi^{+} \rightarrow \begin{cases} \mu^{+} \rightarrow \bar{\nu}_{\mu}, \nu_{e} \rightarrow e^{-} \\ \nu_{\mu} \rightarrow \nu_{e} \rightarrow e^{-} \\ \end{bmatrix} \begin{array}{c} Background \\ Signal \\ \end{array}$$

The oscillation probability is

 $P_{\mu e}^{\pm} \simeq X_{\pm} \sin^2(2\theta_{13})$ + $Y_{\pm} \cos\left(\delta \pm \frac{\Delta_{atm}L}{2}\right) \cos\theta_{13} \sin(2\theta_{13})$ + $Z + \dots$

The (θ_{13}, δ) correlation

The number of signal electrons is:

 $N_{e^{-}}(\bar{\theta}_{13},\bar{\delta}) = \left\{\epsilon_{e} \otimes \sigma_{\nu_{e}} \otimes P^{+}_{\mu e}(\bar{\theta}_{13},\bar{\delta}) \otimes \Phi_{\nu_{\mu}}\right\}_{E}^{E+\Delta E}$

$$N^i_{\pm}(\bar{\theta}_{13},\bar{\delta}) = N^i_{\pm}(\theta_{13},\delta)$$

By changing (θ_{13}, δ) accordingly, curves are drawn in the (θ_{13}, δ) plane.

Degeneracy in (θ_{13} , δ **) at the SPL** 2 years for π^+ and 8 years for π^-

L = 130 Km, $\bar{E}_{\nu\mu} = 0.27$ GeV, $\bar{E}_{\bar{\nu}\mu} = 0.25$ GeV

Input parameters: $\bar{\theta}_{13} = 7^{\circ}, \bar{\delta} = 45^{\circ}$

The (θ_{13}, δ) correlation (2)

The number of signal electrons is:

 $N_{e^{-}}(\bar{\theta}_{13},\bar{\delta}) = \left\{\epsilon_{e} \otimes \sigma_{\nu_{e}} \otimes P^{+}_{\mu e}(\bar{\theta}_{13},\bar{\delta}) \otimes \Phi_{\nu_{\mu}}\right\}_{E}^{E+\Delta E}$

 $N^i_+(\bar{\theta}_{13}, \bar{\delta}, \bar{s}_{atm}, \bar{s}_{oct}) = N^i_+(\theta_{13}, \delta, s_{atm}, s_{oct})$

where

$$\begin{cases} s_{atm} = sign(\Delta m_{atm}^2) = \pm 1 \\ s_{oct} = sign(\tan 2\theta_{23}) = \pm 1 \end{cases}$$

As a first step:

▷ $\theta_{23} = 45^{\circ}$ ▷ Sign of Δ_{atm} fixed

J. Burguet-Castell et al., hep-ph/0103258

The intrinsic clone

As a third step:

 $\triangleright \ \theta_{23} = 45^{\circ}$

▷ Sign of Δ_{atm} variable

H. Minakata, H. Nunokawa, hep-ph/0108085

As a second step:

▷ $\theta_{23} \neq 45^{\circ}$ ▷ Sign of Δ_{atm} fixed

G.L. Fogli, E. Lisi, hep-ph/9604415

Two more ambiguities:▷ the octant clone▷ the sign clone

As a fourth step:

▷ $\theta_{23} \neq 45^{\circ}$ ▷ Sign of Δ_{atm} variable

V. Barger et al., hep-ph/0112119

Three more ambiguities:
▷ the octant clone
▷ the sign clone
▷ the mixed clone

The same at T2-HK

K. Hagiwara, hep-ph/0410229

The same at T2-HK

K. Hagiwara, hep-ph/0410229

The Ultimate Setup

Conventional (super)beams alone are not enough. We must consider NEW FACILITIES.

▷ The Neutrino Factory

- one SuperBeam facility
- two μ -decay tunnels

A. Donini, hep-ph/0310014; NuFact03, New York

Caveat: this study must be updated.

The Neutrino Factory at CERN

The ν -factory/detectors setup

CERN design for a 2.2 GeV superbeam and a 50 GeV Neutrino Factory

• NF: 40 Kton Magnetized iron detector (MID) L = 2810 Km (Canary Islands)

A. Cervera et al.,

Nucl. Instr. Meth. A 451 (2000) 123; NuFact99, Lyon

- NF: 4 Kton Emulsion Cloud Chamber (ECC) L = 732 Km (Gran Sasso) or L = 2810 Km
 D. Autiero *et al.*, hep-ph/0305185; NuFact03, New York
- SB: 400 Kton Water Cherenkov (WC) L = 130 Km (Frejus)

A. Blondel et al.,

Nucl. Instr. Meth. A 503 (2001) 173; NuFact01, Tsukuba

The Golden channel: ν **-factory**

A. Cervera et al., hep-ph/0002108

$$\mu^+
ightarrow \left\{ egin{array}{c} e^+ & & \ ar{
u}_\mu
ightarrow \mu^+ & Background \ ar{
u}_e
ightarrow
u_\mu
ightarrow \mu^- & Signal \end{array}
ight.$$

The oscillation probability is

$$P_{e\mu}^{\pm} = X_{\pm} \sin^2(2\theta_{13})$$
$$+ Y_{\pm} \cos\left(\delta \mp \frac{\Delta_{atm}L}{2}\right) \cos\theta_{13} \sin(2\theta_{13})$$

The Silver channel: *v***-factory**

A. Donini, D. Meloni and P. Migliozzi, hep-ph/0206034

$$\mu^{+} \rightarrow \begin{cases} e^{+} \\ \bar{\nu}_{\mu} \rightarrow \mu^{+} \\ \nu_{e} \rightarrow \nu_{\tau} \rightarrow \tau^{-} \rightarrow \mu^{-} \end{cases}$$

The oscillation probability is

$$P_{e\tau}^{\pm} = X_{\pm}^{\tau} \sin^2(2\theta_{13})$$
$$-Y_{\pm}^{\tau} \cos\left(\delta \mp \frac{\Delta_{atm}L}{2}\right) \cos\theta_{13} \sin(2\theta_{13})$$
$$+Z^{\tau} \pm \infty$$

The intrinsic clones

L = 732 Km

L = 732 Km

Neutrinos

$$\begin{cases} \bar{\theta}_{13} = 5^{\circ} \\ \bar{\delta} = 90^{\circ} \end{cases}$$

Antineutrinos

 $\Delta \theta = \theta_{13} - \bar{\theta}_{13}$

DESY-Hamburg, November 3rd, 2004 – p.21/30

One detector

Consider the NuFact golden channel: best option for one detector, with baseline L = 2810(no sign degeneracies for $\theta_{13} \ge 1^\circ$). A. Cervera *et al.*, hep-ph/0002108

40 Kton MID

Two detectors

You can now add a second detector. We can take advantage of the NuFact silver channel...

A. Donini et al., hep-ph/0206034

- 40 Kton MID
- 4 Kton ECC

Two detectors

... or of the Superbeam-driven water Cherenkov.

J. Burguet-Castell et al., hep-ph/0207080

- 40 Kton MID
- 400 Kton WC

The Three Detectors

However, the very best possibility is to combine the three detectors in their FULL GLORY.

A. Donini, hep-ph/0310014

- 40 Kton MID
- 4 Kton ECC
- 400 Kton WC

Alternatives?

- ▷ The Beta Beam
 - very low-γ BB
 C. Volpe, hep-ph/0303222, hep-ph/0403293
 - low- γ BB plus the SPL
 - J. Bouchez et al., hep-ph/0310059
 - medium- γ BB: ions cocktail
 - J. Burguet-Castell et al., hep-ph/0312068
 - high- γ BB vs the NuFact
 - J. Burguet-Castell et al., hep-ph/0312068
 - very high-γ BB
 P. Migliozzi and F. Terranova, hep-ph/0405081

I will not cover options (1) and (5).

The Beta-Beam at CERN

The Golden channel: β **-beam**

The oscillation probability is

 $P_{e\mu}^{\pm} = X_{\pm} \sin^2(2\theta_{13})$ $+Y_{\pm} \cos\left(\delta \mp \frac{\Delta_{atm}L}{2}\right) \cos\theta_{13} \sin(2\theta_{13})$ $+Z + \dots$

Signal

CERN design for 2.2 GeV superbeam and a low- $\gamma \beta$ -beam: $\gamma = 60$ for ⁶ He; $\gamma = 100$ for ¹⁸ Ne

 440 Kton Water Cherenkov (WC) L = 130 Km (Frejus) UNO Collaboration, hep-ex/0005046; D. Casper, Nucl. Phys. Proc. Suppl. 112 (2002) 161.

Consider the $\nu_e \rightarrow \nu_{\mu}$ at the BB: one massive Water Cherenkov, with baseline L = 130J. Bouchez *et al.*, hep-ph/0310059

• 440 Kton WC-BB

You can now add $\nu_{\mu} \rightarrow \nu_{e}$ at the SPL: same detector, same baseline

440 Kton WC-BB440 Kton WC-SPL

This is the general situation for $\delta \neq 90^{\circ}$. A. Donini *et al.*, hep-ph/0406132

Unfortunately, there is NO SYNERGY: same detector, same baseline, SAME ENERGY!

The medium- γ Beta Beam

Using an upgraded SPS or the LHC, we could increase the energy:

 $\gamma = 350$ for ⁶ He; $\gamma = 580$ for ¹⁸ Ne The same detector:

 440 Kton Water Cherenkov (WC) L = 732 Km (Gran Sasso or Soudan) UNO Collaboration, hep-ex/0005046; D. Casper, Nucl. Phys. Proc. Suppl. 112 (2002) 161.

 In this case, energy resolution can be used J. Burguet-Castell *et al.*, hep-ph/0312068

The medium- γ Beta Beam

The medium- γ Beta Beam

⁸Li is a good alternative to ⁶He: higher production rate, same lifetime.

- low-γ:
 higher statistics
- medium-γ: complementarity

AD, E. Fernández-Martínez, S. Rigolin.

The ions cocktail at medium- γ

- five years with $\gamma_{^6He} = 350$; $\gamma_{^{18}Ne} = 580$;
- five years with $\gamma_{^{8}Li} = 386$; $\gamma_{^{18}Ne} = 580$.

The high- γ Beta Beam

If (using the LHC?) we achieve the energy: $\gamma = 1500$ for ⁶ He; $\gamma = 2500$ for ¹⁸ Ne then we can use both the golden and silver channels:

• 40 Kton Magnetized iron detector (MID) L = 2810 Km (Canary Islands)

A. Cervera et al.,

Nucl. Instr. Meth. A 451 (2000) 123; NuFact99, Lyon

 4 Kton Emulsion Cloud Chamber (ECC) L = 732 Km (Gran Sasso) or L = 2810 Km
 D. Autiero *et al.*, hep-ph/0305185; NuFact03, New York

If not possible, we must start thinking to somethingsimilar.J. Burguet-Castell *et al.*, hep-ph/0312068

The high- γ Beta Beam

A fifth of the statistics at $\gamma_{^{18}Ne} = 2500, \gamma_{^{6}He} = 1500$:

It is crucial to combine experiments and neutrino sources with different L/E to solve the severe parameter degeneracy that obstacles a clean measurement of (θ_{13}, δ) .

The Neutrino Factory with three detectors (a Megaton WC, a magnetized iron detector and an ECC) can do the job for $\theta_{13} \ge 1^{\circ}$. It also measures the sign of Δm_{atm}^2 and the θ_{23} -octant. This scenario need update!

A setup including a BetaBeam is, in my opinion, the most interesting option in between the approved SuperBeam Phase-I and, possibly, a Neutrino Factory.

The BetaBeam option must be studied carefully, taking advantage of existing resources.

The BetaBeam option must be studied carefully, taking advantage of existing resources.

 The only carefully studied option, low-γ BetaBeam with L = 130 Km is not competitive with SB-Phase II. Room for improvement!

The BetaBeam option must be studied carefully, taking advantage of existing resources.

- The only carefully studied option, low-γ BetaBeam with L = 130 Km is not competitive with SB-Phase II. Room for improvement!
- Medium-γ BetaBeam with L = 732 Km is better than SB-Phase II.
 Do binning without energy resolution: ions cocktail.

The BetaBeam option must be studied carefully, taking advantage of existing resources.

- The only carefully studied option, low-γ BetaBeam with L = 130 Km is not competitive with SB-Phase II. Room for improvement!
- Medium-γ BetaBeam with L = 732 Km is better than SB-Phase II.
 Do binning without energy resolution: ions cocktail.
- ▷ High-γ BetaBeam is the only alternative to Neutrino Factory. Technically possible?