The HLMA project

Thierry Lasserre (CEA/Saclay) In collaboration avec S. Schönert (MPIK) & L. Oberauer (TUM)

December 11th 2002, CERN

KamLAND sensitivity study

Fogli, Lettera, Lisi, Marrone, Palazzo, Rotunno, hep-ph/0208026

The Post-KamLAND world: HLMA is among the possible solutions

Post-SNO global analysis + KamLAND: HLMA disfavoured

The HLMA Facility

Dedicated reactor neutrino experiment to probe the HLMA region: **2** $10^{-4} < \Delta m^2$ (< 9 $10^{-4} eV^2$)

Specifications:

- Physics: One dominant baseline ~ 20 km
- Facility: Underground site with large cavities
- Politics: Reactors operating more than 10 years

Current Best Choice

The Heilbronn salt mine

~ 2000 caverns, Each of similar size to Gran Sasso halls: 15m (width) × 10-20m (height) × 100-200m

Detector site: Aerial view

Anti- v_e interaction rate at Heilbronn

- >300 GW_{th} European power plants included
- Average typical fuel composition (U, Pu)
 v_e + p → e⁺ + n
 → <σ>/fission = 5.825×10⁻⁴³ cm²
- For 10^{31} protons, 194 tons PXE ($C_{16}H_{18}$)
- Load factor: 80% to 90%
- Expected rate ~ 1150/year (100% eff.)
- 77% of the rate @ 20km baseline

19°N	Reactor	Distance [km]	$Power [GW_{th}]$	R_L	R_L/R_0
	Neckarwestheim	19.5	6.388	754	66%
	Obrigheim	19.5	1.057	125	11%
8°N	Philipsburg	54	6.842	107	9%
	Biblis	80	7.420	52	4%
7°N	Grundremmingen	117	7.986	26	2% ⊣
	Others (Europe)	> 100	~ 293	86	8% لع

HLMA Focus: Solar mixing parameters

- · 2 neutrino mixing
- 10³¹ protons
- No energy resolution
- 250 keV bins
- $\Delta m^2 < 10^4 eV^2$ only rate suppr.
- Optimised for HLMA region
- \cdot High sensitivty to Δm^2

T. Lasserre

Reconstruction of $[\Delta m^2_{sol}, sin^2 2\theta_{sol}]$

Simulation of HLMA @Heilbronn (kochendorf)

For a fix choice of $[\Delta m^2_{sol}, \frac{\sin^2 2\theta_{sol}}{\sin^2 2\theta_{sol}}]$

- 1 HLMA simulated 3 years of data
- No background included
- 250 keV bins
- 100% efficiency
- 10³¹ free protons target
- 2 neutrino mixing scenario

MINUIT fit - MINOS contours ($\Delta\chi 2$, 2 parameters & 1, 2, 3 σ)

$\Delta m^2_{sol} eV^2$	$\sin^2 2\theta_{sol}$	δ(Δm² _{sol}) 1σ	δ(sin²2θ _{sol}) 1σ	
2×10-4	0.8	1.8 %	1.8 %	
3×10-4	0.8	1.2 %	1.7 %	
4×10-4	0.8	1 %	2.3 %	
6x10-4	0.8	-	-	

T. Lassei

3 neutrino oscillation analysis

 |U_{e3}|2 <<1 → atmospheric and solar neutrinos decoupled
 |U_{e3}|2 ≥ 0.01 and Δm²_{sol} ≤ Δm²_{atm}: BOTH atmospheric and solar oscillations develop without being averaged
 HLMA: Optimal baseline ~ 20km

 2 by-products of the HLMA : constraint on |U_{e3}| and probe of the V mass hierarchy (Petcov & Piai)

Constaint on $|U_{e3}|$:

- CHOOZ bound: $|U_{e3}|^2 < 0.036$ (95% C.L), $\Delta m_{atm}^2 = 2.5 \ 10^{-3} \ eV^2$, $\sin^2(2\theta) = 0.89$ (*Bilenky, Nicolo, Petcov*)
- HLMA: down to $|U_{e3}|^2 \sim 0.01$ (estimation)
- Detector size scale: 10³² protons-year
- Effect independent of the $(\Delta m^2_{sol})_{LMA}$ value

By-product 1: constraint on $|U_{e3}|$

By-product 2: V mass hierarchy (1)

<u>Normal Hierarchy (NH)</u>	Inverted Hierarchy (IH)
$-m_1 < m_2 < m_3$	-m ₃ <m<sub>1<m<sub>2</m<sub></m<sub>
-Interference term: $sin^2(\theta_{sol})$	-Permutation $3 \rightarrow 1$, $2 \rightarrow 3$, $1 \rightarrow 2$
-constraint on U _{e3}	-Interference term: $\cos^2(\theta_{sol})$
	-constraint on U _{e1}

By-product 2: V mass hierarchy (2)

Physics goals & detector design

I) Accurate measurement of the solar mixing parameters

- Target size scale: ~ 5x10³⁰ protons-year (~100t PXE)
- $\delta(\Delta m^2)$ < 5% & $\delta(\sin^2 2\theta)$ < 5% (2 sigmas)
- II) By-product 1: Constraint on |U_{e3}| By-product 2: Sensitivity to v mass hierarchy ?
 - Target size scale: 10³² protons-year for |U_{e3}|^{2~}0.01 (KamLAND scale)
 - Resolve Δm_{atm}^2 driven oscillations \rightarrow Energy resolution δE

$$\begin{array}{c} \Delta \mathsf{E} \\ \hline \Delta \mathsf{E} < \Delta(E) = \left(\frac{a \cdot E_{\bar{\nu}_e}^2 [MeV]}{1 - a \cdot E[MeV]} \right) \\ 2\pi/a = 2.54 \cdot \Delta m_{atm}^2 [eV^2] \cdot L[m] \end{array} \begin{array}{c} \textcircled{0}{20 \text{ km}} \\ \textcircled{0}{3}\text{MeV} \Rightarrow \delta \texttt{E} < 0.5 \text{ MeV} \\ \textcircled{0}{4}\text{MeV} \Rightarrow \delta \texttt{E} < 1.0 \text{ MeV} \\ \textcircled{0}{5}\text{MeV} \Rightarrow \delta \texttt{E} < 1.7 \text{ MeV} \end{array} \end{array}$$

- Energy Resolution \rightarrow 400 pe/MeV, ~7% σ (1MeV)

***) Anti-neutrino detection free of background !

Schematic view of the detector

Detector size used for background simulation

\overline{v}_e detection free of background

Anti- v_e tag: $v_e + p \rightarrow e^+ + n$, ~1.8 MeV Threshold

- Prompt e+, E_P =1-8 MeV, visible energy
- Delayed neutron capture on H, E_D=2.2 MeV

Time correlation: $\tau \sim 200 \mu sec$

Space correlation: < 1m³

• Prompt(β/γ) - Delayed(β/γ) \rightarrow pulse shape discrimination

- <u>Background induced by cosmic rays</u> (radioactive nuclei, neutrons)

- Background from radioactivity (rocks, detector material, water shielding, scintillator)

Measurement of $|U_{e3}|^2$ with an optimum reactor neutrino experiment

Working Group: S. Schönert (MPIK), K. Knoepfle (MPIK), T. Lasserre (CEA/Saclay), L. Oberauer (TUM), F. Von Feilitzch (TUM), L. Mikaelyan (RRC), V. Martemyanov (RCC), ...

December 11th 2002, CERN

Current Status on $|U_{e3}|^2$ constraints

Experiment	$\sin^2(2\theta_{13})$	$ U_{e3} ^2$ θ_{13} (deg)		Physics	
CHOOZ (95%C.L.)	<0.14	< 0.036	<11	-	
MINOS	<0.06	< 0.015	<7.1	?	
ICARUS 5 years	< 0.04	<0.010	<5.8	2013 ?	
OPERA 5 years	< 0.06	< 0.015	<7.1	2013 ?	
JHF2K 3years?	< 0.006	< 0.0015	<2.3	2011 ?	
Kr2Det	< 0.016	< 0.004	<4?	?	
Kashiwasaki	>0.02	>0.05	>4	?	
XXX (95% C.L) Without a near detector	<0.04(0.05)	<0.01(0.012)	<5.7	2008 ?	
XXX (95% C.L) With a near detector	<0.02(0.025)	<0.005(0.007)	<2.9	2009 ?	

• When the C.L. are not given, upper limits correspond to 90% C.L

•
$$\Delta m_{atm}^2 = 2.5 \ 10^{-3} \ eV^2$$
 and $\sin^2(2\theta_{atm}) = 1$

• $\sin^2(2\theta_{13}) = 4 |U_{e3}|^2 (1 - |U_{e3}|^2)$

Working group meeting 1

• Working Group: S. Schönert (MPIK), K. Knoepfle (MPIK), T. Lasserre (CEA/Saclay), L. Oberauer (TUM), F. Von Feilitzch (TUM), L. Mikaelyan (RRC), V. Martemyanov (RCC),

• First Meeting: Max-Planck Institut fuer Kernphysisk Heidelberg, 05-06 December 2002

• Discussion:

- - -

- The optimum reactor experiment for $|U_{e3}|^2$ measurement
- Sensitivity to $|U_{e3}|^2$ shape analysis & rate analysis
- Advantages of reactor experiments & Complementarity with long baseline
- Outline of the experimental issues ()
- Discussion of the Kr2Det project at Krasnoyarsk (Russia)

Optimum baseline VS Δm^2_{atm}

If $\Delta m_{atm}^2 = 3.9 \ 10^{-3} \ eV^2$ (SK/K2K upper bound at 90% C.L) then the optimum baseline is at ~1150 meters. It shows that CHOOZ was optimised for higher Δm_{atm}^2 values since Kamiokande preferred higher Δm_{atm}^2 values than Super-Kamiokande? If $\Delta m_{atm}^2 = 1.6 \ 10^{-3} \ eV^2$ (SK/K2K lower bound at 90% C.L) then the optimum baseline is at ~2800 meters. If $\Delta m_{atm}^2 = 2.5 \ 10^{-3} \ eV^2$ (SK/K2K best fit value) then the optimum baseline is at ~1800 meters

Advantages / Disavantages of a reactor experiment

- Few MeV $v_e \rightarrow$ disappearance experiments $\rightarrow P(v_e \rightarrow v_e)$ measurement
- Few MeV v_e + very short baseline
 - → No matter effect contribution
 - \rightarrow |U_{e3}|² measurement independent of sign(Δm^{2}_{13})

• $|U_{e3}|^2$ measurement rather insensitive to precise values $\Delta m_{12}^2 - |U_{e2}|^2$ (if not in the HLMA region ! or solar driven oscillation to be included – not a problem)

• $|U_{e3}|^2$ measurement independent of the δ -CP phase

CLEAN constraint on $|U_{e3}|$ independent of: $sign(\Delta m_{13}^2) - \theta_{23} - \delta - \Delta m_{12}^2 - \theta_{12}$

→ complementary with long baseline experiments

LBL v_{μ} disappearance gives: $\sin^2(2\theta_{23}) \rightarrow 2$ solutions : $\theta_{23} \& \pi/2 - \theta_{23}$ $|\Delta m_{13}^2| \rightarrow 2$ solutions $m_1 > m_3$ or $m_3 > m_1$

LBL appearance probability given by:

$$\begin{split} P(\text{anti-}\nu_{\mu}(\nu_{\mu}) \rightarrow \text{anti-}\nu_{e}(\nu_{e})) &\sim \quad K_{1}\sin^{2}(\theta_{23})\sin^{2}(2 \ \theta_{13}) \\ &+ K_{2}\sin(2\theta_{23})\sin(\theta_{13})\operatorname{sign}(\Delta m^{2}_{31})\cos(\delta) \\ &\pm K_{3}\sin(2\theta_{23})\sin(\theta_{13})\sin(\delta) \end{split}$$

- K₁,K₂,K₃: known constants (within experimental error)
- dependence on $\sin(2\theta_{23})$, $\sin(\theta_{23}) \rightarrow 2$ solutions
- dependence on sign(Δm_{31}^2) \rightarrow 2 solutions

• δ -CP phase can run in $[0,2\pi] \rightarrow$ panel of solutions in general \rightarrow A least 2 solutions with optimal LBL, v_{μ} & anti- v_{μ}

Complementarity of LBL appearance and reactor disappearance experiments

Reactor provides confirmation

Improvement of the upper bound

The dream site ...

• Reactor Complex requirement:

- As less reactor cores as possible (or compact group of cores) -> only 1 near detector
- (But) high thermal power ightarrow a lots of statistics in a short time
- With a underground cavern ~ few hundreds meters from the reactor (near detector)
- ON/OFF cycle for efficient background suppression

• Detector Site:

- Optimum baseline \rightarrow 1.8 km for Δm^2_{atm} = 2.5 10⁻³ eV²
- Underground cavern:
 - → ~ 600 mwe overburned) → S/R ratio (muon background, cosmogenics, neutrons, ...)
 - → Extended cavern (late baseline optimisation)
 - → Easily accessible Existing infrastructure

★ - Detector design: Low target mass (smaller \rightarrow cheaper, and easier: cavity may be dig for the near detector 50t max). 2 identical detectors

Current best site: Krasnoyarsk (Kr2Det)

V. Martemyanov, L. Mikaelyan, V. Sinev, V. Kopeikin, Y. Kozlov, Russian Research Center "Kurchatov Institute"

Parameter	Distance,	Target,	$N(e^+,n),$	$N(e^+,n),$	Backgr., day ⁻¹	
	m	mass, ton	day^{-1}	$year^{-1*}$	correl.	accid.**
Far detector	1000	46	55	$16.5 \cdot 10^{3}$	5	~ 0.3
Near detector	115	46	4200	$12.5 \cdot 10^{5}$	5	~ 0.3

* 300 days/year at full power.

** due to internal radioactivity of the detector materials only.

Current best site: Krasnoyarsk

$$X_{rate}(\sin^2 2\theta, \Delta m^2) = \left(\frac{L_{far}}{L_{near}}\right)^2 \cdot \left(\frac{V_{near}}{V_{far}}\right) \cdot \left(\frac{\epsilon_{near}}{\epsilon_{far}}\right) \cdot \left(\frac{N_{far}}{N_{near}}\right)$$

•Advantages:

- 1 core

- Underground reactor

- Underground cavern (600 mwe) with 2 sites at ~100m and ~1000m

- ON/OFF cycle for efficient background suppression: [50d/ON & 7d/OFF] cycle

- 2 identical detectors (same overburned)
- Available now

Weak points:

- Far detector @1000m → probably not optimal

- Only 1.6 GWth → 50tons detector for 15kevents/year

- Siberian Taiga (2x5h plane, + 2h drive ...)

Experimental challenge: reduce the systematics

Important question: which systematical error is realistically achievable ?

- CHOOZ → 2.8 %
- Bugey → 3.5 %
- Kr2Det 0.5 % (shape) 0.8% (rate) with a near detector
- Kashiwasaki \rightarrow 0.8 % with a near detector (Bugey Scaling)

NOT straightforward to decreadse systematics to 1% - Investigation -

Needs justification