The impact of solar and atmospheric parameter uncertainties on the measurement of θ_{13} and δ

Davide Meloni

INFN Sezione di Roma1

based on a collaboration with A. Donini and S. Rigolin

ECFA/BENE Week, March 16-18

CONTENTS

1 Introduction

parameter correlations and degeneracies $\begin{cases} in the \nu_e \to \nu_\mu(\nu_\tau) \ appearance \\ in the \nu_e \to \nu_e, \ \nu_\mu \to \nu_\mu \ disappearance \end{cases}$

- 2 The appearance and disappearance channels at the low-gamma β -Beam: the measure of θ_{13} and δ
 - impact of solar parameters on the measurement of $heta_{13}$ and δ
 - impact of atmospheric parameters on the measurement of θ_{13} and δ
 - comparing the effects for present and estimated uncertainties
- 3 The appearance and disappearance channels at the SPL Super-Beam
 - The measure of the atmospheric parameters
 - The combination of APP+DIS channels to measure of θ_{13} and δ

Introduction

Present State of Neutrino Oscillation Parameters

- solar angle and mass difference are "known"
- atmospheric sector: $|\Delta m^2_{23}|$ and departure of $\sin^2 2 heta_{23}$ from maximal mixing are "known"

Degeneracies

... in appearance: widely discussed in literature

Fogli96, Burguet-Castell01, Minakata01...

$$\underbrace{N_{\alpha\beta}^{\pm}(\bar{\theta}_{13},\bar{\delta};\bar{s}_{atm},\bar{s}_{oct})}_{true \ parameters} = \underbrace{N_{\alpha\beta}^{\pm}(\theta_{13},\delta;s_{atm}=\pm\bar{s}_{atm};s_{oct}=\pm\bar{s}_{oct})}_{guessed \ parameters}$$

 N_{β}^{\pm} = number of charged leptons l_{β}^{\pm} observed in a given detector $\alpha, \beta =$ neutrino flavours

- four different models (each of them with a definite s_{atm}, s_{oct} choice) must be used to fit the data on the lhs
- all in all, they form an eightfold degeneracy: the *intrinsic*, the *sign*, the *octant* and the mixed clones

1 large and dangerous nuisance that increases the resulting uncertainty on $heta_{13}$ and δ

... in disappearance

a similar appoach can be applied to study the $\begin{cases} & \text{in the } \nu_e \to \nu_e \text{ at the } \beta - \text{Beam} \\ & \text{in the } \nu_\mu \to \nu_\mu \text{ at the SPL Super} - \text{Beam} \end{cases}$

The facilities

The β -Beam

- $\nu_e \ (\bar{\nu}_e)$ from ¹⁸Ne (⁶He) ions accelerated at $\gamma = 100 \ (\gamma = 60)$
- 10 yrs of ν_e and $\bar{\nu}_e$ β -Beam run with a 440 KTon detector
- background and efficiencies

J.	Bouchez et al.,	AIP	Conf.	Proc.	721,	37(2004)	
----	-----------------	-----	-------	-------	------	----------	--

appearance :A. Donini et al., hep - ph/0406132

J. Burguet – Castell et al., Nucl. Phys. B695, 217(2004)

disappearance : A. Donini et al., hep - ph/0411402

The Super-Beam

- ν_{μ} $(\bar{\nu}_{\mu})$ from π^+ (π^-) (60 m decay tunnel assumed)
- 2 yrs of u_{μ} and 8 yrs of $\bar{
 u}_{\mu}$ Super-Beam run with a 440 KTon detector
- background and efficiencies

```
appearance :
J. J. Gomez – Cadenas et al., hep – ph/0105297
A. Donini et al., hep – ph/0406132
disappearance :
A. Donini et al., hep – ph/0411402
```

plan of the talk

• the β -Beam setup

```
-correlation and degeneracies in \nu_{\rm e} disappearance (appendix)
```

```
impact of the parameter uncertainties: 
-full 3-parameter analysis in the measurement of \theta_{13} and \delta
```

• the Super-Beam setup

 $\begin{array}{l} \mbox{correlation and degeneracies in ν_{μ} disappearance} \\ \mbox{the atmospheric sector}: \delta(\Delta m^2_{\rm atm}), \delta(\theta_{23}) \\ \mbox{combining appearance and disappearance channels to measure θ_{13} and δ} \end{array}$

1 Full 3-par analysis of the appearance channel

- we investigate the impact of uncertainties in the atmospheric and solar parameters in the measure of (θ_{13},δ)

- in order to understand how any single parameter affect the measurement, we perform three-parameters fits in θ_{13} , δ and only one of the following parameters in turn $x = \theta_{12}$, Δm^2_{12} , θ_{23} and Δm^2_{23}

- For each degeneracy
 - we build a three-parameters χ^2

$$\chi^{2}(\theta_{13},\delta,x) = \sum_{p=\pm} \left[\frac{N^{p}(\theta_{13},\delta,x,s_{atm},s_{oct}) - N^{p}(\bar{\theta}_{13},\bar{\delta},\bar{x},\bar{s}_{atm},\bar{s}_{oct})}{\delta_{N^{p}}} \right]^{2}$$

$$(\delta N^{p})^{2} = \sigma_{N}^{2} p + (s N^{p})^{2} + (s B^{p})^{2} \qquad s = sys, B^{p} = background$$

parameter	present Bahcall04 (solar)-Gonzalez-Garcia03 (atm)	expected LOI of T2K (hep-ex/0106019)	C.V.
$ an^2 heta_{12}$	0.30–0.54 (29° – 36°)	_	0.39
$\Delta m^2_{12}/10^{-5}~eV^2$	7.5–9.1	—	8.2
$ an^2 heta_{23}$	0.53-2.04 (36° - 55°)	0.57–0.88 (37° – 43°)	0.7*
$\Delta m^2_{23}/10^{-3}~eV^2$	1.7–3.5	2.3–2.7	2.5
$ an^2 heta_{23}$	new analysis Enrique's talk	0.62–0.85 (38° – 43°)	
$\Delta m^2_{23}/10^{-3}~eV^2$	new analysis	2.42-2.61 (2.47-2.64)	

• projection of the 90% CL surface of $\chi^2(\theta_{13}, \delta, r)$ on the (θ_{13}, δ) plane

- easy to understand
- easy to compare with the usual bidimensional fit

Full 3-par analysis of the app channel at β -Beam

The solar sector

we perform two distinct three-parameters fit in θ_{13} , δ and $x = \theta_{12}$ (for fixed Δm_{sol}^2) or $x = \Delta m_{sol}^2$ (for fixed θ_{12}) \Longrightarrow same results \Longrightarrow only the case $x = \theta_{12}$ shown

the solar sector does not introduce further uncertainties on the measure of θ_{13} and δ

 $\chi^2(\theta_{13}, \delta, x) = \chi^2_{app}(\theta_{13}, \delta, x) + \chi^2_{dis}(\theta_{13}, \delta, x)$

The atmospheric sector (I)–current errors

 $x = \theta_{23}$

 $(\bar{\theta}_{13}, \bar{\delta}) = (2/7^{\circ}, 45^{\circ})$

 $x = \Delta m_{23}^2$

- two(dotted) and three-par fit superimposed

- $\delta(\theta_{13}) \sim 3^{\circ} - 4^{\circ}$ (to compesate a change in θ_{23} in the leading term in $P_{e\mu} : \sin^2(2\theta_{13}) \sin^2 \theta_{23}$)

- overall error on
$$\delta$$
 larger for $x=\Delta m^2_{23}$

the atmospheric sector strongly affects the measure of θ_{13} and δ

 $\chi^2(\theta_{13}, \delta, x) = \chi^2_{app}(\theta_{13}, \delta, x) + \chi^2_{dis}(\theta_{13}, \delta, x)$

The atmospheric sector (II)–expected errors from LOI of T2K

"The overall sensitivity of the first phase is expected to be 1% in precision for $\sin^2 2\theta_{23}$ and better than $1 \times 10^{-4} \text{ eV}^2$ for Δm_{23}^2 "; we estimate the error on $\bar{\theta}_{23} = 40^\circ$ and $\bar{\Delta} m_{23}^2 = 2.5 \cdot 10^{-3} eV^2$ $(\bar{\theta}_{13}, \bar{\delta}) = (2/7^\circ, 45^\circ)$

significant reduction on the θ_{13} -spread is achieved

for larger values of θ_{13} the error is enhanced due to the octant ambiguity

also the δ -spread is reduced considerably with respect to the results obtained with present uncertainties

 $\chi^2(\theta_{13}, \delta, x) = \chi^2_{app}(\theta_{13}, \delta, x) + \chi^2_{dis}(\theta_{13}, \delta, x)$

The atmospheric sector (III)-new analysis of expected performance of T2K

we consider $\theta_{23} \in [38.2, 42.7]$ and $\Delta m_{23}^2 \in [2.42, 2.61] \cdot 10^{-3} \ eV^2$ computed for $\bar{\theta}_{23} = 40^\circ$ and $\bar{\Delta}m_{23}^2 = 2.5 \cdot 10^{-3} \ eV^2$

 $(\bar{\theta}_{13}, \bar{\delta}) = (2/7^{\circ}, 45^{\circ})$

If θ_{23} and Δm^2_{atm} can be really measured at the T2K-phase I experiment with the expected precision and for any value of $\bar{\theta}_{23}$, the results of two-parameters studies can be considered reliable

 $\chi^2(\theta_{13}, \delta, x) = \chi^2_{app}(\theta_{13}, \delta, x) + \chi^2_{dis}(\theta_{13}, \delta, x)$

The atmospheric sector (III)-new analysis of expected performance of T2K

we consider $\theta_{23} \in [38.2, 42.7]$ and $\Delta m_{23}^2 \in [2.42, 2.61] \cdot 10^{-3} \ eV^2$ computed for $\bar{\theta}_{23} = 40^\circ$ and $\bar{\Delta}m_{23}^2 = 2.5 \cdot 10^{-3} \ eV^2$

 $(\bar{\theta}_{13}, \bar{\delta}) = (2/7^{\circ}, 45^{\circ})$

If θ_{23} and Δm^2_{atm} can be really measured at the T2K-phase I experiment with the expected precision and for any value of $\bar{\theta}_{23}$, the results of two-parameters studies can be considered reliable

Conclusions on the low-gamma β -Beam analysis

with present uncertainties, the measurement of the two unknowns in the PMNS mixing matrix is severely spoiled

errors on θ_{13}

<u>errors on δ </u>

present uncertainties

 $\delta(\theta_{13})$ as large as 4° are found (a little bit smaller for $\overline{\delta} = 90^{\circ}$)

expected uncertainties

 $\delta(\theta_{13})$ as large as $2.5 - 3^{\circ}$ are found (a little bit smaller for $\overline{\delta} = 90^{\circ}$) present uncertainties half of the parameter space is spanned (a little bit smaller for $\overline{\delta} = 90^{\circ}$)

expected uncertainties

less than half of the parameter space is spanned

A significant reduction in the uncertainties on the atmospheric parameters (especially on θ_{23}) is mandatory if we plan to use such a facility to look for θ_{13} (and δ)

2 The ν_{μ} disappearance channel at the SPL SB

useful to measure the atmospheric parameters

$$\begin{split} P(\nu_{\mu} \to \nu_{\mu}) &= 1 - (\sin^2 2\theta_{23} - s_{23}^2 \sin^2 2\theta_{13} \cos 2\theta_{23}) \sin^2 \left(\frac{\Delta_{atm} L}{2}\right) \\ &- \left(\frac{\Delta_{sol} L}{2}\right) [s_{12}^2 \sin^2 2\theta_{23} + \tilde{J} s_{23}^2 \cos \delta] \sin(\Delta_{atm} L) \\ &- \left(\frac{\Delta_{sol} L}{2}\right)^2 [c_{23}^4 \sin^2 2\theta_{12} + s_{12}^2 \sin^2 2\theta_{23} \cos(\Delta_{atm} L)] \end{split}$$

The main uncertainties in the measure of θ_{23} and Δm^2_{23} comes from:

intrinsic clone

sign clone

The ν_{μ} disappearance channel at the SPL-SB

full 3-par analysis of disappearance channel: $\chi^2(\theta_{23},\Delta m^2_{atm},\theta_{13})$

Combining APP+DIS channels at the SPL SB 3

the previous intervals on $heta_{23}$ and Δm^2_{atm} are used to study the combination

 $(\bar{\theta}_{13}, \bar{\delta}) = (2/7^{\circ}, 45^{\circ})$

-50L

2

8

6

 Θ_{13}

10

 θ_{13} will not be measured better than $\sim 2^\circ$

Conclusions on the SPL SB analysis

atmospheric parameters measurement from disappearance channel is mainly affected by *sign* ambiguity

- errors on Δm^2_{23} roughly doubled but similar to T2K and Enrique's analysis
- errors on θ_{23} comparable to the current uncertainties

combining appearance and disappearance channels to measure θ_{13} and δ

- degeneracies are still present but reduced in size
- physics reach: it performs slightly better than β -Beam in measuring θ_{13}
- half of the parameter space for δ is spanned, θ_{13} measured with error of $\mathcal{O}(2^{\circ})$
- octant and mixed ambiguities cause a shift towards smaller θ_{13} (for any value of $\overline{\delta}$)

A significant reduction in the uncertainties on the atmospheric parameters is mandatory if we plan to use such a facility to look for δ

4 The ν_e disappearance channel

$$P_{ee}^{\pm} = 1 - \left(\frac{\Delta_{atm}}{B_{\mp}}\right)^2 \sin^2\left(\frac{B_{\mp}L}{2}\right) \sin^2(2\theta_{13}) - \left(\frac{\Delta_{sol}}{A}\right)^2 \sin^2\left(\frac{AL}{2}\right) \sin^2(2\theta_{12})$$

It well describes the behaviour of the full transition probability in the energy range covered by the considered β -Beam setup

It does not depend on θ_{23} and δ

Useful to measure θ_{13}

Two remaining sources of ambiguities that can affect the measure of θ_{13} :

- s_{atm} (for large values of θ_{13} , i.e. in the "atmospheric" region)
- $(\theta_{13} \theta_{12})$ correlation (for small values of θ_{13} , i.e. in the "solar" region)

$$\begin{cases} N_{\nu_{e}}^{\pm}(\bar{\theta}_{13},\bar{\theta}_{12};\bar{s}_{atm}) &= N_{\nu_{e}}^{\pm}(\theta_{13},\theta_{12};s_{atm}=\bar{s}_{atm}) & \text{intrinsic} \\ N_{\nu_{e}}^{\pm}(\bar{\theta}_{13},\bar{\theta}_{12};\bar{s}_{atm}) &= N_{\nu_{e}}^{\pm}(\theta_{13},\theta_{12};s_{atm}=-\bar{s}_{atm}) & \text{sign} \end{cases}$$

The intrinsic ambiguity is not a problem since the clone point is at: $\theta_{13} = \bar{\theta}_{13}, \theta_{12} \sim \pi/2 - \bar{\theta}_{12}$

In principle the sign clone could be dangerous for values of $\bar{\theta}_{13} < 3^{\circ}$

The ν_e disappearance channel

the sign ambiguity from the $\theta_{13} - \theta_{12}$ correlation

two different input points: $(\bar{\theta}_{13}, \bar{\theta}_{12}) = (0.5/2^{\circ}, 32^{\circ})$

-red (blue) lines for neutrinos (antineutrinos)

-also plotted the 1 and 3 σ errors on θ_{12}

the sign clone could in principle induce a relatively large spread on the measure of θ_{13}

BUT the statistics is too low to separate the true from the clone region (example for $\bar{\theta}_{13} = 2^{\circ}$)

-solid (dotted) line stands for intrinsic (sign) degeneracy

-background and systematics (2 %) included

the effect of the sign clone is screened by low statistics \Rightarrow the clones from $\theta_{13} - \theta_{12}$ correlation are a marginal problem

The ν_e disappearance channel

sensitivity to θ_{13}

we expect very small improvement combining app+dis channels to measure θ_{13} , even with an "optimistic" systematic error

Comparison with the CP-coverage P. Huber et al., hep-ph/0412199

one builds $\chi^2(\theta_{13}, \delta, N_{\alpha})$, N_{α} external parameters marginalization over N_{α} parameters ψ for each $\bar{\theta}_{13}, \bar{\delta}$, a 2-dim $\chi^2(\theta_{13}, \delta, N_{\alpha}^{min})$ ψ we then minimize the resulting function in θ_{13} ψ a one-dimensional function of δ : $\chi^2_{min}(\delta, \bar{\delta})$ ψ imposing $\chi^2_{min}(\delta, \bar{\delta}) = CL$, intervals $\Delta_I(\bar{\delta})$ can be found

$$\xi(\bar{\delta}) = \text{Coverage in } \delta = \frac{1}{2\pi} U_{I=1}^{N_{deg}} \Delta_I(\bar{\delta})$$

 compact way to compare performacies of different experiments

general underestimation of the error on $ar{\delta}$

we performed this procedure starting from a 4-D grid in θ_{13} , δ and the atmospheric parameters and compared with the projection of our 3-D fit (vertical gray bands)

 β -Beam fits for $\bar{\delta}=\pm90^\circ,\pm45^\circ,0$ present uncertainties

 β -Beam fits for $\bar{\delta}=\pm90^\circ,\pm45^\circ,0$ expected uncertainties

SPL Super-Beam fits for $\overline{\delta} = \pm 90^{\circ}, \pm 45^{\circ}, 0$

SPL Super-Beam fits for $\overline{\delta} = \pm 90^{\circ}, \pm 45^{\circ}, 0$

Physics in the first stage of the T2K project

sensitivity of the neutrino oscillation parameters

solid lines: curves for $\sin^2(2\theta_{23}) = 1$ dashed lines: curves for $\sin^2(2\theta_{23}) = 0.9$

