

1998 Neutrino Revolution and Physics Goals for NNN Experiments

ECFA/BENE, May. 2004

UNO Detector Conceptual Design

A Water Cherenkov Detector optimized for:

- Light attenuation length limit
- PMT pressure limit
- Cost (built-in staging)

ECFA/BENE, May. 2004

Only optical separation

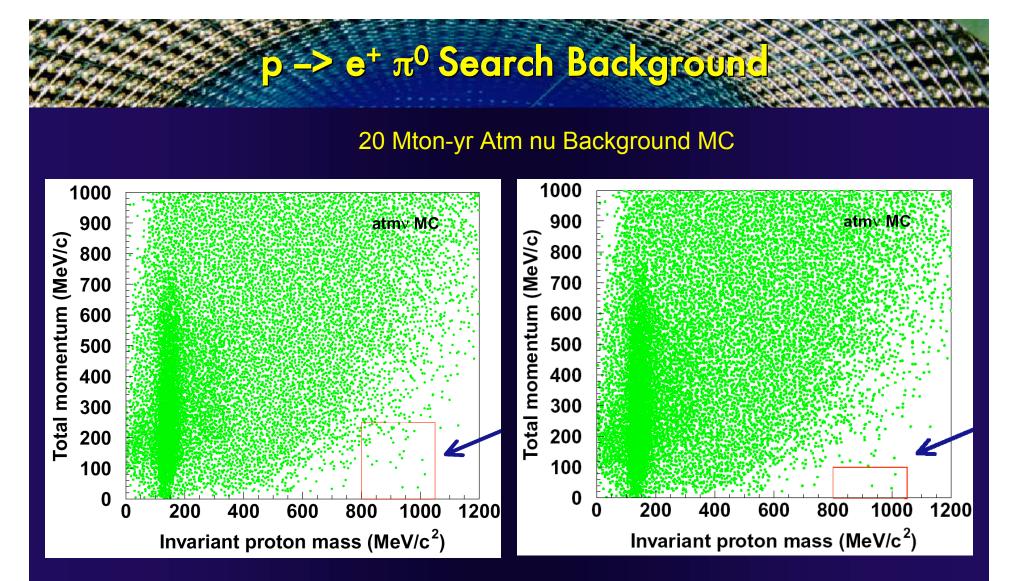
40%

10%

60x60x60m³x3 Total Vol: 650 kton Fid. Vol: 440 kton (20xSuperK) # of 20" PMTs: 56,000 # of 8" PMTs: 14,900

Why not smaller multiple detectors?

- More Expensive
 - Larger surface area to fiducial volume ratio
 - \Rightarrow Need more PMTs
 - Smaller fiducial to total volume ratio
 - Need more drifts and auxiliary/service space


⇒ typically excavation costs for drifts are more expensive than for large volume excavation

- Smaller Energy Containment
- Poorer Pattern Recognition Capability with same photocathode coverage
 - More detailed discussion later

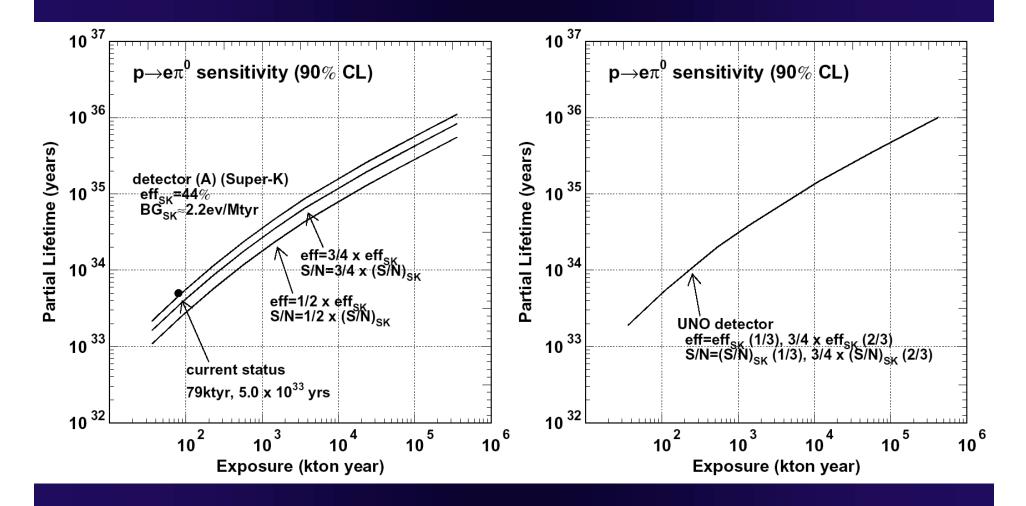
UNO Physics Goals Supernova Nucleon decay Neutrinos Atmospheric Supernova Neutrinos **Relic Neutrinos** Super-beam +Beta-beam) Astrophysical Neutrino sources **Solar Neutrinos**

 ⇒ Multi-purpose detector with comprehensive physics programs for astrophysics, nuclear physics and particle physics
 ⇒ Synergy between accelerator physics and non-accelerator physics

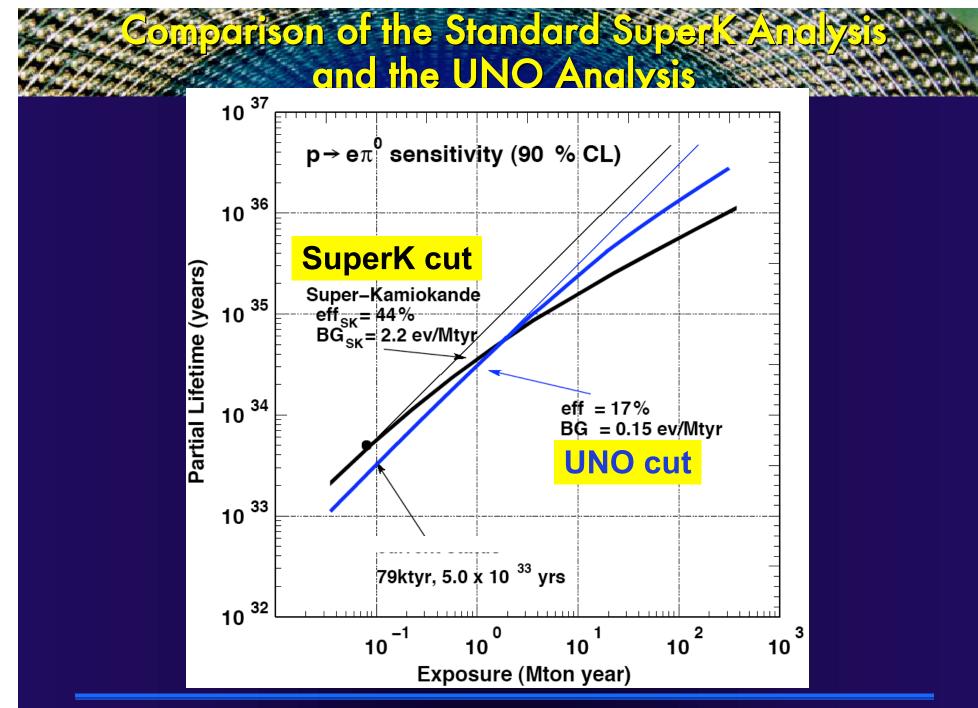
ECFA/BENE, May. 2004

SuperK Standard Cuts ==> 2.2 events/Mton-yr ==> signal eff.: 43.0% Tighter Momentum (UNO) Cut ==> 0.15 events/Mton-yr ==> signal eff.: 17.4%

ECFA/BENE, May. 2004


p -> e⁺ π⁰ Search Signal

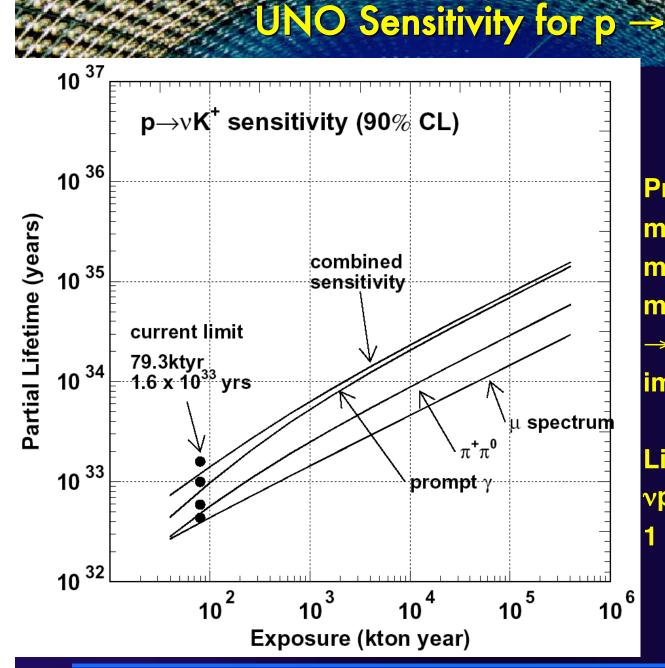
Signal Events w/ Tighter Momentum (UNO) Cut



UNO Sensitivity for p \rightarrow

Using SuperK Standard Cut

ECFA/BENE, May. 2004

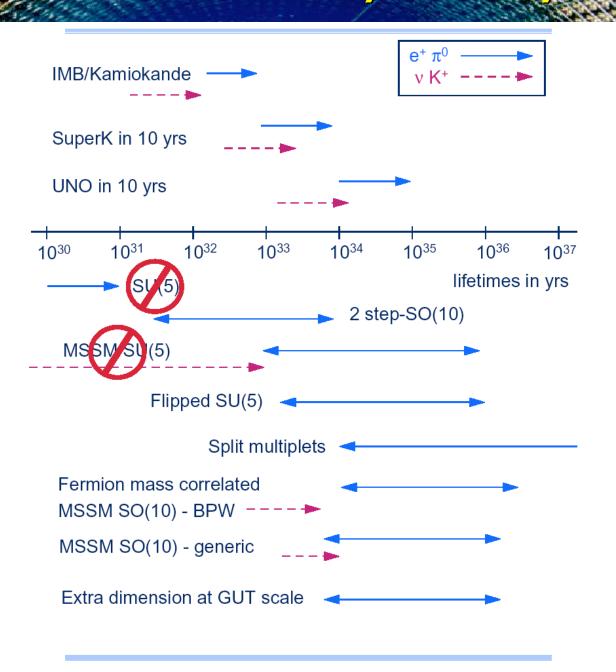

ECFA/BENE, May. 2004

econstructed Mass Peak from p

16 16 5 Mtyr exposure with tight cut 5 Mtyr exposure with tight cut eff.=17.4%, PDK=6, BG=1 14 eff.=17.4%, PDK=3, BG=1 14 12 12 10 10 8 8 6 6 4 Δ 2 2 0750 800 850 900 950 1000 1050 1100 $\tau/B(p \rightarrow e^+ \pi^0)$ ⁰750 $\tau/B(p \rightarrow e^+ \pi^0)$ 800 850 900 950 1000 1050 1100 invariant proton mass (MeV/c²) invariant proton mass (MeV/c²) = 5x10³⁴ years = 1x10³⁵ years 16 16 10 Mtyr exposure with tight cut 10 Mtyr exposure with tight cut 1 candidate 1 candidate eff.=17.4%, PDK=12, BG=2 eff.=17.4%, PDK=6, BG=2 14 14 event/~3 yrs event/~1.5 yrs 12 12 10 10 8 8 6 6 4 2 2 ⁰750 800 850 900 950 1000 1050 1100 950 1000 1050 1100 750 800 850 900 invariant proton mass (MeV/c²) invariant proton mass (MeV/c²)

Chang Kee Jung

ECFA/BENE, May. 2004



Prompt γ coincidence method most powerful: most backgrounds are mis-fitted vertex events → can be rejected by improved fitter

Limiting background from $\nu p \rightarrow \nu \Lambda K^+$ 1 event/Mt-yr

ECFA/BENE, May. 2004

UNO Proton Decay Sensitivity

ECFA/BENE

Edward Witten mentioned "proton decay" about 10 times during his talk on Super-symmetry at the LP2003...

"Proton Decay in Intersecting D-brane Models", I. Klebanov and E. Witten, hep-th/0304079

⇒ one of the first few testable calculations/predictions
 based on string theory
 ⇒ urged by Jung

"Unification Day": Oct. 15, 2004, Colorado being co-organized by Witten and CKJ Part of the UNO Collaboration Meeting Oct. 14-16

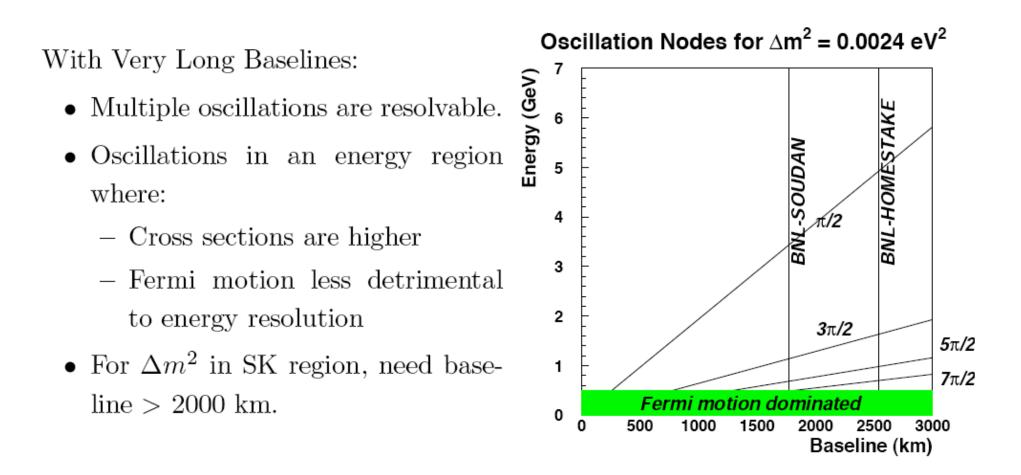
What are the biggest challenges we face for an approval of UNO?

ECFA/BENE, May. 2004

The Challenges

- Ensuring Synergy between non-accelerator physics and the accelerator based neutrino oscillation physics
 - Influences site location, detector design, and cost
- Determining an **Optimal Site**
 - Distances to possible neutrino beams, depth, access and environmental issues, local geology
 - \Rightarrow influences detector design, and cost
- Reducing the cost or at least keeping it down
 - Depends on the physics requirements and site
 - Ultimate Question: Is the community willing to pay for this physics?
 - \Rightarrow Enormous pressure from the LC community
 - R&D (mostly to reduce cost)

ergy between Non-accelrator and Accelerator Physics

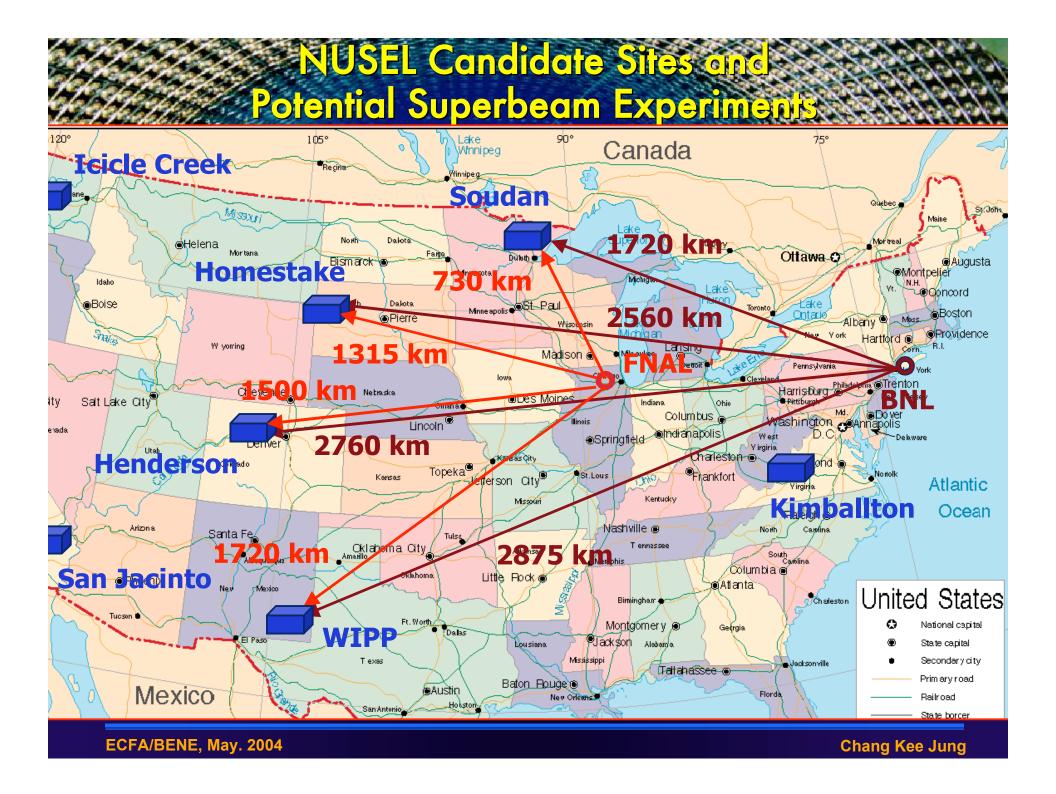

- Water Cherenkov detector is a natural fit for a superbeam LBL neutrino oscillation experiments
- CPV along with many other crucial oscillation parameters could be measured with a UNO scale detector at various baselines
 - CERN → Fréjus study (130 km, 4MW proton beam)
 - J-PARK → Kamioka study (295 km, 4MW proton beam)
 - BNL → Western sites study (2000 4000 km, 1MW proton beam)

 \Rightarrow an elegant idea (Bill Marciano, hep-ph/0108181)

provides a crucial LBL superbeam exp. option for UNO

Why the V in VLBL?

BNL Study



Need wide band, high energy ν beam, but what about NC ν_e bkg? \longrightarrow

ECFA/BENE, May. 2004

BNL Plan Overview

- Upgrade BNL AGS proton driver to 1 MW, don't rule out 2 MW.
- Develop target/horn system able to handle >1 MW.
- Produce on-axis wide band high-ish energy neutrino beam $(E_{\rm T2K} < E_{\rm BNL} < E_{\rm NuMI}).$
- Find a 500 kton fiducial mass water Cherenkov detector,
- at a 2000 3000 km distance (focus is on 2500 km).
- Run for 5×10^7 secs (over 5 years) in neutrino mode.
- Run 2 MW, 5 years in anti-neutrino mode if needed.

Is BNL Superbeam Very Long Baseline Experiment feasible?

Background Study at Stony Brook

- Study done so far with SuperK detector geometry and configuration
 - Initial results were discouraging
 - Recent analysis improves the results (hopeful)

Analysis	Signal	Bkg	Comments	Signal	Bkg
BNL Rep	v _e QE	$\nu_{\mu} NC \ 1\pi^0$		303	146
Ι	$\nu_{e} QE$	$\nu_{\mu} NC \ 1\pi^0$		242	380
II	$v_e QE$	$\nu_{\mu} NC \ 1\pi^0$	likelihood	228	233
III	$\nu_{e} CC$	$v_{\mu}, v_{e} NC$	Δlikelihood		
		v_{μ} CC	< 0.0	501	1102
Summary of Yanagisawa's work			< -0.4	450	853
			< -0.8	397	617
			< -2.0	251	253
ECFA/BENE, May. 2004					Chang Kee Ju

ind

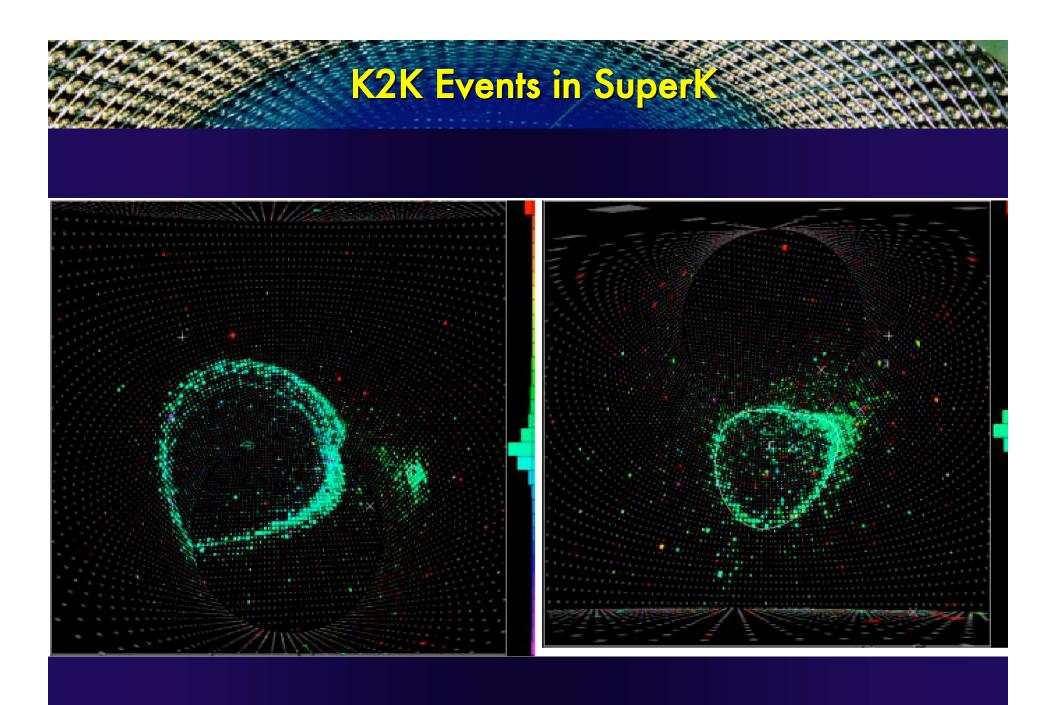
Continue: Background Study at Stony Brook

- More room to improve in analysis
 - For example, look for crisp electron ring against other garbage rather than positively identifying pi-zeros
- Can the UNO detector characteristics be approximated with the SuperK geometry
 - UNO central module: 40% photo-cathode coverage

 \Rightarrow same as the SuperK-I

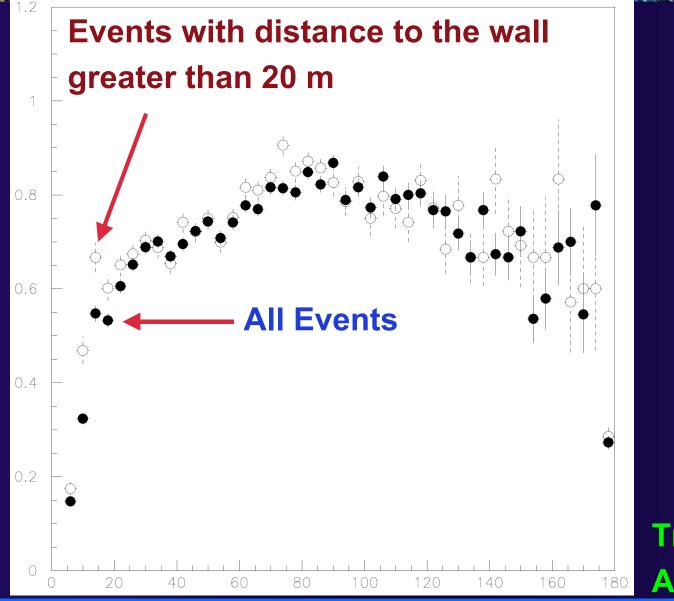
- ⇒ Are the two detectors have the same detector performance?
- UNO wing modules: 10% photo-cathode coverage

Detector Size Effects


- For the same photo-cathode coverage, the larger detector has effectively finer granuality
 - Better pattern recognition capability

⇒Better Particle ID

- Better position and angular resolutions
- SuperK vs K2K 1kt detector **
- We expect UNO central module will be better than the SuperK-I (about 4:1 granuality ratio)
 - Need detailed MC to verify this
 - Preliminary study with SuperK geometry MC
 - Loss of Cherenkov light due to light attenuation need to be taken into account



ECFA/BENE, May. 2004

ECFA/BENE, May. 2004

Pi-zero Finding Efficiency

True openning Angle (degrees)

ECFA/BENE, May. 2004

What can be done in the future?

Overriding principle: Keep the cost down

- Detector
- 1. Development of more sophisticated software
 - Improvement in computing will most likely come without increase in cost
 - SuperK Tau appearance analysis, L/E analysis **...
- 2. Possible employment of more sophisticated electronics
 - waveform digitizer
 - Narrower PMT integration time
 - Reduce scattered light

- Q: Is BNL Superbeam Very Long Baseline Experiment feasible?
- A: We do not have an answer yet, but, I believe, It deserves a serious consideration
 - With critical and careful simulation work
 - This could be the idea most fashionable 10 years later
 - ⇒ recall original BNL off-axis long baseline experiment proposal in the early 1990's
 - Wrong baseline (due to imprecise knowledge on oscillation parameters)
 - But was proven to an ingenious idea (credit to TRIUMF)
 - The basic idea can be used for an experiment at Fermilab or any other accelerator labs

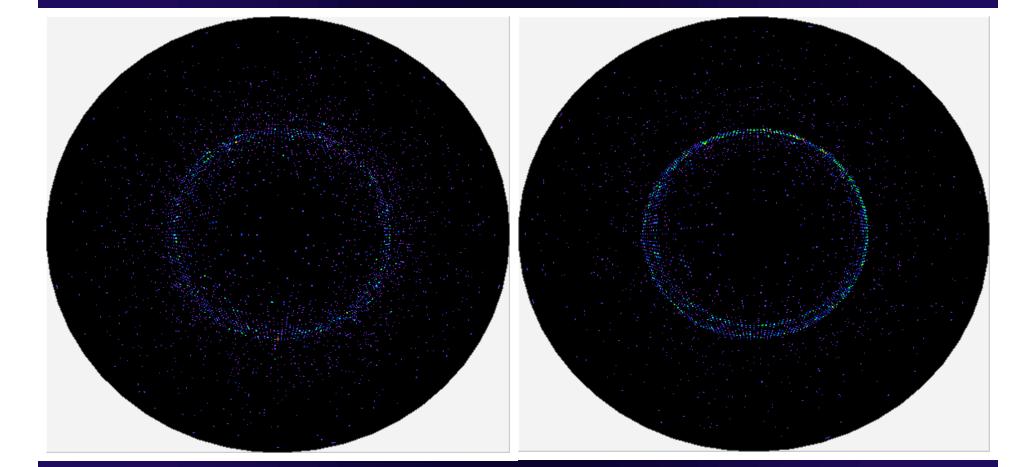
Status of UNO Software

(work done mostly McGrew and Viren (BNL))

- Detector Simulation
 - Mostly done
 - A useable version exist
- Event reconstruction
 - Still in infancy
 - Much more work need to do

ECFA/BENE, May. 2004

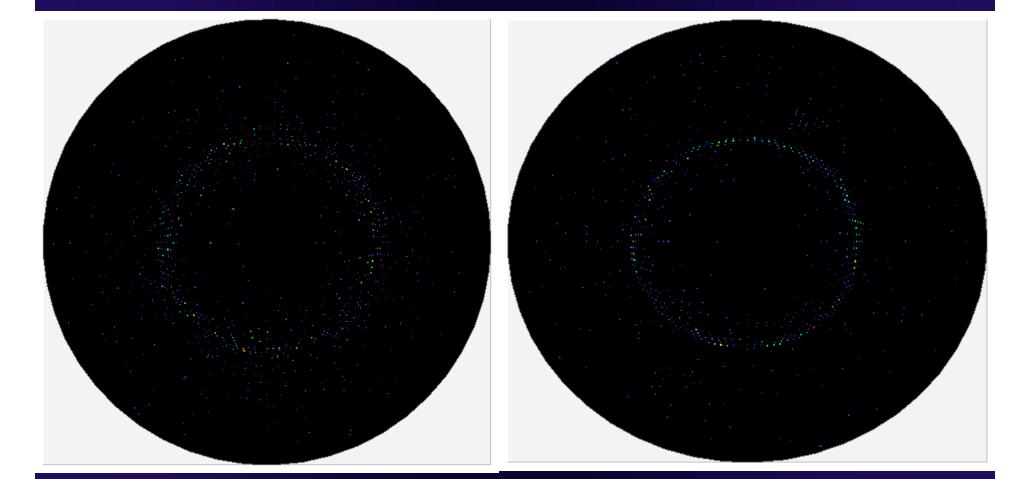
Chang Kee Jung


neutrino sources w/ energy range ~10 GeV ~100 GeV

Can look for astrophysical

⇒ Complementary to ICECUBE

Through-going Muon Event in UNO



1 GeV electron

1 GeV muon

ECFA/BENE, May. 2004

1 GeV electron

1 GeV muon

ECFA/BENE, May. 2004

Detector Site Issues

- The most pressing issue for UNO
 - We must secure a site within next a years or so
 - No site → No experiment!
- Optimal Depth
 - 4000 mwe (~5000 ft) or deeper
 - ⇒ Driven by the SRN search and Solar nu study

⇒ also reduce the risk of unknown B.G. to PDK searches at shallow depths

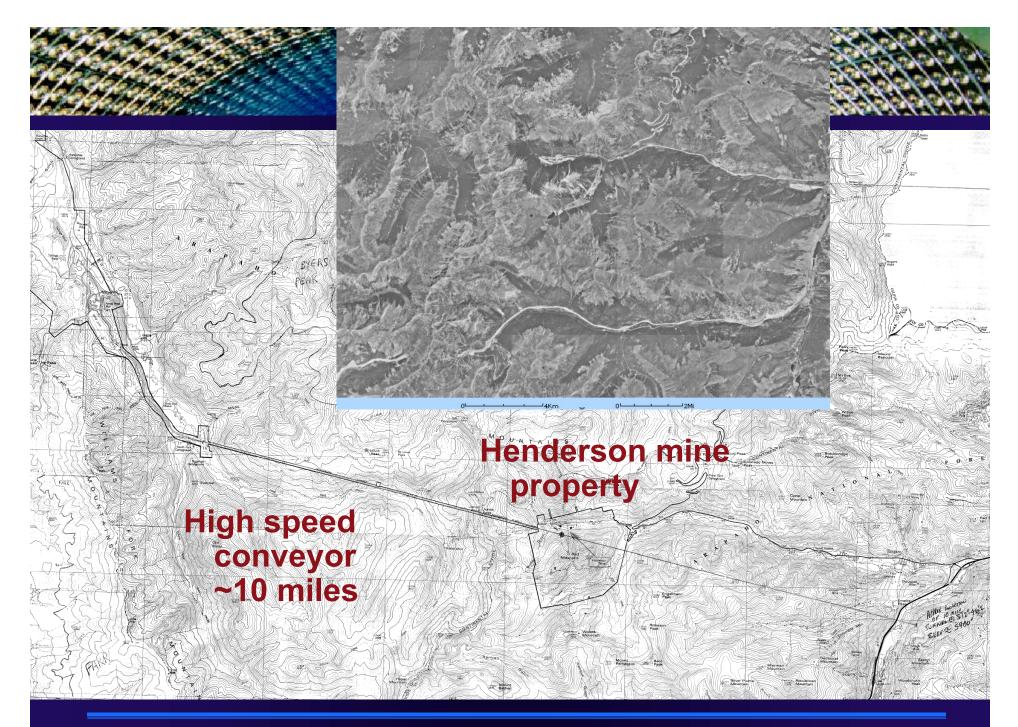
- Distance from Major Proton Accelerator Labs
 - Need flexibility
- Environmental Issues
 - Case of Gran Sasso: http://news.independent.co.uk/europe/story.jsp?story=411011

NUSEL/UNO at Henderson Initiative

ECFA/BENE, May. 2004

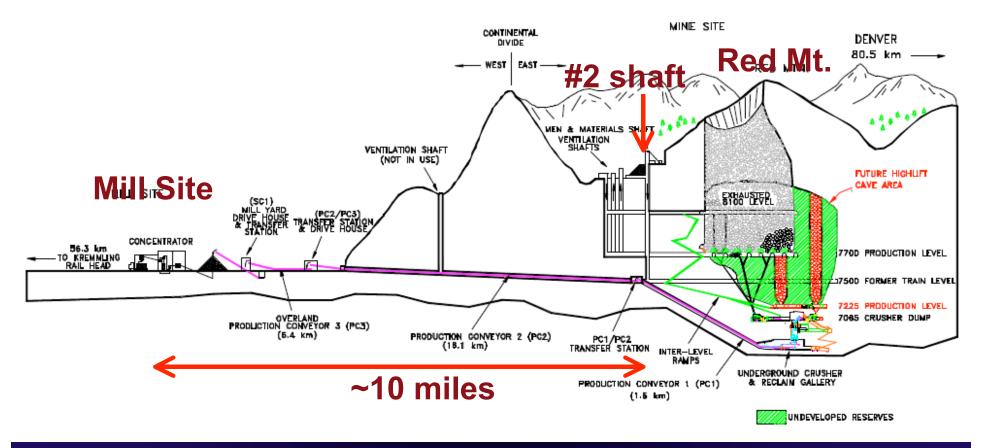
ECFA/BENE, May. 2004

- **Excellent Access** \mathbf{O}
 - Near an international airport
 - Near a major highway
- **Excellent Environment** \mathbf{O}
 - Near major universities
 - Near a major city
 - Strong community support
 - Friendly and enthusiastic mining company
 - Near many resorts with conference facilities

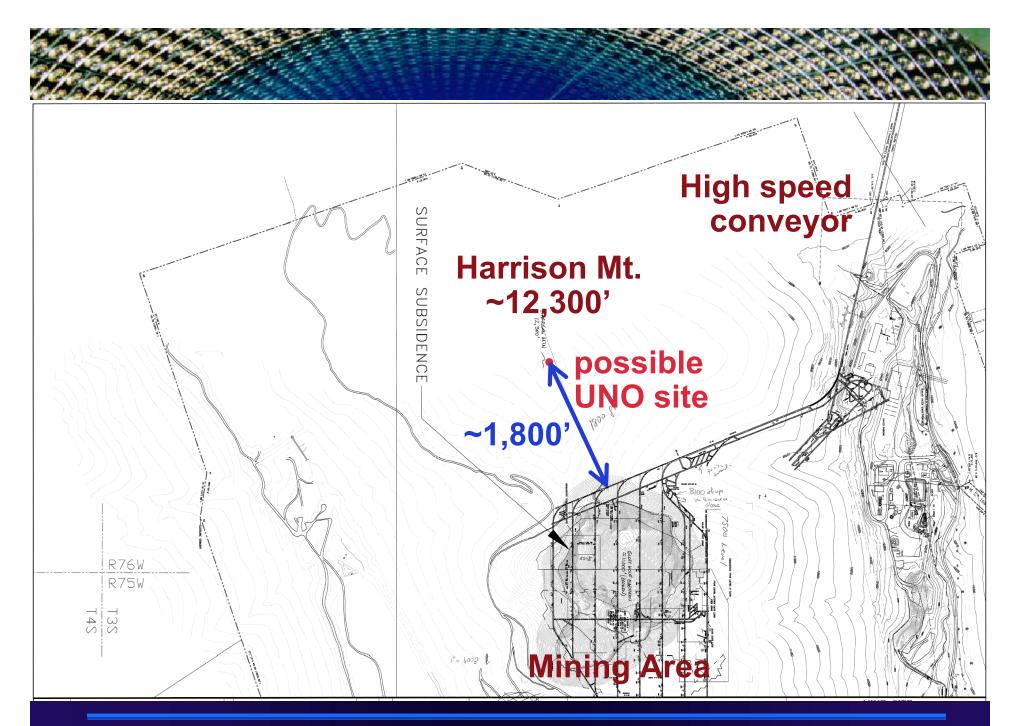

ECFA/BENE, May. 2004

Henderson Mine

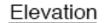
- Modern Molybdenum (Moly) mine owned by Phelps-Dodge
 - Established in 1970's
 - ⇒ Better environmental control
- Block-caving operation under Red Mountain
- #2 Shaft for hoisting (a total of 5 shafts)
 - Collar at 10,350 feet above sea level
 - 28 feet diameter w/ two hoisting compartments
 - The large hoist: 23' long by 8'6" wide by 13' tall w/ 20 tons normal capacity

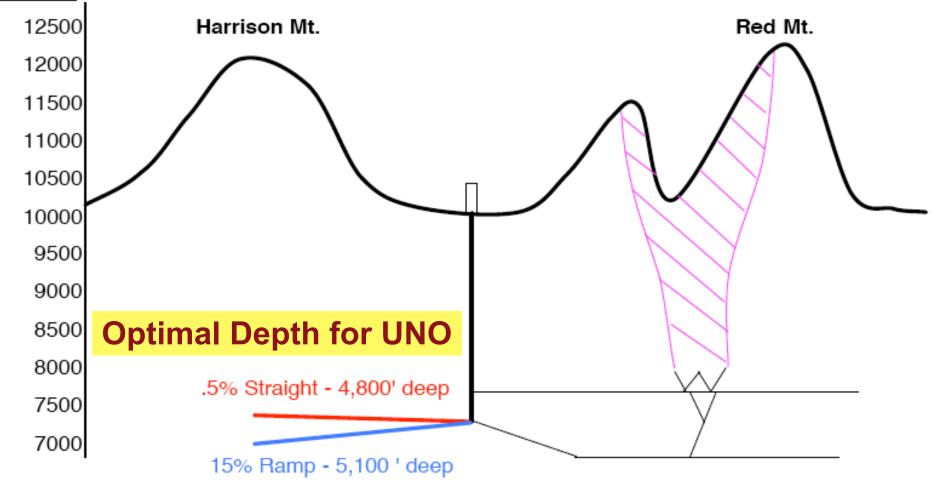

 \Rightarrow fits a sea container

- Mining level
 - 6930 feet (~3000 mwe) and 8100 feet above sea level


ECFA/BENE, May. 2004

Vast Infrastructure


- One of the largest mining operation with large modern shafts
- Large capacity high speed conveyor system
- Existing tailing site and all necessary environmental permits


ECFA/BENE, May. 2004

ECFA/BENE, May. 2004

Preliminary Discussions and Future

- Harrison Mt. Geology
 - A detailed surface mapping in 1980's
 - ⇒ Competent Precambrian Silver Plume Granite (PSPG) w/ a broken zone
 - A exploratory drill hole: made in 1968
 - \Rightarrow Vast majority of the core: PSPG
 - \Rightarrow competency: ~6 to 8 (w/ 9 being maximum)

More competent at deeper depth

- Expect highly competent rock at the proposed UNO site

 \Rightarrow need new drilling to verify (\$100k/drilling)

- Preliminary excavation cost estimate: \$116M (30% contingency)
 - 1M m³ volume w/ two access drifts & surface treatment

Recent NSF Action

- All four unsolicited NUSEL proposals submitted in the past years have been returned to the proponents w/ an accompanying letter from Mike Turner which says:
 - Altered circumstances
 - Serious concerns about the Homestake expressed by the panel that named Homestake "the most favorite site"
 - ⇒ uncertainty associated with the flooding, a major concern

- Start a new process for selecting a NUSEL
 - Consider all possibilities again
 - Three step approach
 - 1) one or more interdisciplinary teams to develop a preliminary plan

Requirements for Physics Modules

"deep" experiments (double-beta, dark matter, solar, etc.)

"large" experiments (proton decay, superbeam)

"Solicitation 1" to be announced in early May

2) Fund grants for conceptual planning of infrastructure as related to the site

"Solicitation 2" to be announced in early May

Fast track (3 months)?

Down select candidate sites (1 - 3?)

Award ~\$500k for initial site study for 6 months

 Fund technical designs including initial research projects

"Solicitation 3" to be made at a later time

Down select candidate sites (1 - 2?)

First budget to appear for NUSEL ~FY2008

UNO Detector Components Estimated Unit Costs (Update)

<u>Item</u>	Unit Cost	Source
Excavation	\$260/m^{3 *}	L. Peterson
	\$200/m ^{3 **}	K. Nakamura
	\$150/m ^{3 ***}	S. Patchet
	\$200/m ^{3 ****}	Homestake Mining Co.
	\$116/m ^{3 ****}	C. deWolfe
20" PMTs	\$2,775 *****	Hamamatsu
8" PMTs	\$1,200 *****	Hamamatsu

* Hard Rock Environment, Horizontal Access, Q=100

(MINOS excavation cost ~ \$280/m³)

** @Kamioka site, based on 1 Mton excavation

*** @WIPP site (Excavation costs include access tunnel and service area

+ 25% contingency, depth@1100m, w/ a new shaft)

**** @Homestake site (quoted by K. Lande, pure mining cost)

***** for 56k 20" PMT + 15K 8" PMT order (\$1.00 = 100 Yen)

(includes \$50/PMT transportation cost, 100 m cable cost,

8 year delievery time, previously it was \$3,100)

ECFA/BENE, May. 2004

Preliminary Cost Estimates

C TO MARTENSI CARA SECTION				ALCOLOGICAL AND	CRUCK CHICKNE
Item	SuperK		UNO Hard Rock*	Henderson Mine	
Cavity Excavation	27,640	\mathbf{v}	168,000	116,000	
Water piping and pumps	630	\mathbf{v}	4,082		
Water Purification System	1,850	v	11,988		
Power Station	720	v5	2,160		
Crane	760	v5	2,280		
Cavity Treatment/Water Tank	18,400	s	25,000		
PMT support structure	4,580	s	23,019		
Counting Room	330	s5	990		
Computer Building	1,860	s2	2,232		
Main Building	3,000	s2	3,600		
20" PMT (including cables)	34,670	s	155,457		
Electronics	6,330	s5	9,495		
DAQ	1,090	s5	1,635		
Air Conditioning	210	s5	315		
Veto instrumentation	3,000	s5	9,000		
8" PMT (including cables)	2,262	s	17,881		
Total	102,070		437,135	385,135	
(1\$ = 100 Yen)			0000		
* Q=100, Horizontal Access	(in thousands of US \$) (as of Dec. 2			2003)	

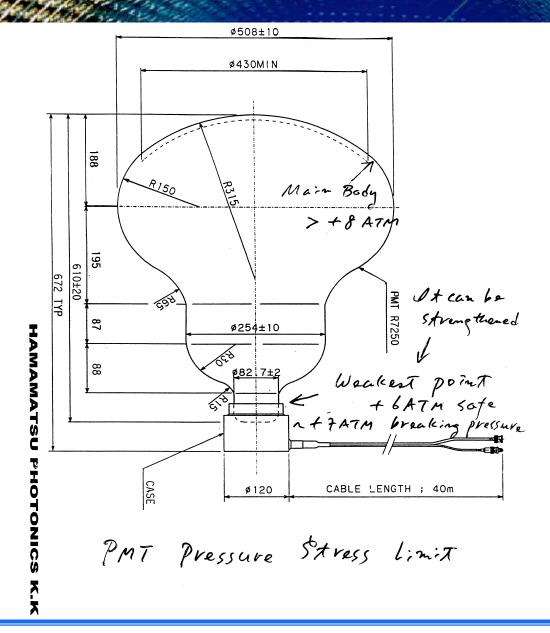
Conceptual UNO Schedule

Conceptual UNO Schedule Year -3 Year -2&-1 Year 1 4 5 8 9 2 3 6 R&D Proposal/LOI Tech. Proposal Excavation Water containment PMT delivery Preparation Installation Water fill contingency

Two years of rigorous professional detector design needed

10

Future Plan and R&D


- UNO Planning and R&D Proposal, Sep. 2004
 - UNO generic R&D and Planning (DOE and NSF)
 - ⇒ Water containment/rock surface treatment method
 - Being carries out at Colorado State University
 - ⇒ PMT mounting scheme
 - ⇒ PMT cost reduction scheme
 - Burle (DOE small business detector development award)
 - ⇒ Alternative photo-detector R&D
 - HPD (Hamamatsu): See Nakamura's talk
 - Referenc Tube: U.C. Davis
 - ⇒ Preliminary technical design of the detector
 - \Rightarrow more rigorous cost estimates
 - \Rightarrow software development for MC simulation and physics study

- Exploratory Work at the Henderson Mine
 - ⇒ Detailed geological survey to determine candidate site
 - \Rightarrow drilling and rock characterization
 - ⇒ Computer modeling/numerical analysis of the cavern
 - \Rightarrow cosmic ray flux measurements
 - Utilize high school outreach program (UW, UNL)
 - \Rightarrow radon concentration measurements
- Preliminary Cost estimates (excavation, etc.)
- Environmental assessment (EPA)
- Long term liability issues
- Expand the Collaboration
 - 2004 target: over 100 members

Cervity Treatment/Water Containment System

- Initial estimate in 2001 (in the narrative)
 - \$5M (estimated by the Golds Associates) for hard rock site for a simple geo-membrane liner
- Revised estimate in 2003
 - \$25M for a more durable surface treatment (combination of Minegard coating + a steel frame lattice work + concrete treatment + Geothane membrane seal).
 - ⇒The Minegard coating alone: ~\$10M for the entire surface of the UNO cavity including the dome area.
 - a straight extrapolation from the actual SuperK cost including material, labor and scaffolding.
 - ⇒The estimate still quite uncertain

Hamamatsu 20" PMT Pressure Stress Limit

===> Spherical PMT and other photo-detector R&D

ReFerence Photosensor at UC Davis Partly supported by the Advanced Detector Research Award • (DOE) Collaboration w/ IIT Night Vision • Ideal Light Concentrator Photoelect Photon **Photocat Flat-Panel Honeycomb Camera Construction** PIN, APD, or "Something Else" **Optimal Electron Lens**

Industrial Production (no glass blowing etc.) Mechanical Rigidity

ECFA/BENE, May. 2004

UNO Milestones and Future Plan

- UNO First Proposed at NNN99, Sep. 1999
- UNO Proto-Collaboration established, Sep. 2000
- UNO Whitepaper for Snowmass01, Jun. 2001
- HEPAP Sub-panel on Long range Planning Report, Oct. 2001
- CPU (Committee on Physics of Universe) Report, 2002
- NAS NFAC (Neutrino Facility Advisory Committee) Report, 2002
- HEPAP Facilities Committee Report, Mar. 2003
- The Henderson mine became the primary US site for UNO, 2003
- DOE Orbach List
- Seed funding (\$100k) from the Stony Brook University, Nov. 2003
- UNO Proto-Collaboration transformed to a formal Collaboration, Mar. 2004
- NSF Announcement for establishment of DUSEL in US, Mar. 2004
- Formation of HUSEP (Henderson Underground Science and Engineering Project)

UNO Collaboration

(as of May, 2004)

97 Members from 40 Institutions, 7 Countries (Experimentalists Only)

ANL	GRPHE / UHA - Mulhouse, France	LANL	SUNY at Stony Brook	
Maury Goodman	Yann Benhammou	Todd J. Haines	Marcus Ackerman	
D. Reyna	Gyeongsang National Univ., Korea	Louisiana State Univ.	John Hobbs	
R. Talaga	S. H. Kim	Bob Svoboda	Chang Kee Jung	
J. Thron	I. G. Park	Univ. of Minesota, Duluth	Tokufumi Kato	
BNL	C. S. Yoon	Alec Habig	Dan Kerr	
Milind Diwan	Indiana Univ.	Univ. of Minesota, Minneapolis	Kenkou Kobayashi	
Maurice Goldhaber	Rick Van Kooten	Marvin Marshak	Matthew Malek	
Dick Hahn	INFN-Napoli	Earl Peterson	Bob McCarthy	
Brett Viren	Vittorio Paladino	Univ. of Nebraska	Clark McGrew	
Minfang Yeh	INFN-Padova	Dan Claes	Michael Rijssenbeek	
Caltech	Mauro Mezzetto	NHMFL	Antony Sarrat	
Christopher Mauger	INR (Institute for Nuclear Research), Rusia	John Miller	Ryan Terri	
Univ. of California, Davis	Leonid Bezrukov	Univ. of New Mexico	Chiaki Yanagisawa	
Daniel Ferenc	Anatoly Butkevich	Sally Seidel	IRES / ULP - Strasbourg, France	
California State Univ., Dominguez Hills	Marat Khabibullin	Northern Illinois Univ.	Chantal Racca	
Ken Ganezer	Yury Kudenko	Gerald C. Blazey	Jean-Marie Brom	
Jim Hill	Stanislav Mikheyev	Dhiman Chakraborty	Tuft Univ.	
Bill Keig	Iowa State University	David Hedin	Tomas Kafka	
Univ. of Cantania, Italy	Jim Cochran	Northwestern Univ.	Tony Mann	
Renato Potenza	Univ. of Kansas	Heidi Schellman	Univ. of Utah	
Colorado School of Mines	Phil Baringer	Okayama Univ., Japan	Kai Martens	
John Fanchi	Dave Besson	Makoto Sakuda	Warsaw Univ., Poland	
Murray Hitzman	Kansas State Univ.	Purdue Univ.	Danka Kielczewska	
D. Scott Kieffer	Tim Bolton	Wei Cui	Univ. of Washington	
Mark Kuchta	Eckhard von Toerne	John Finley	Rick Gran	
James McNeil	Ron A. Sidwell	Saclay, France	Jeff Wilkes	
Fred Sarazin	Noel Stanton	Jacques Bouchez	Tianchi Zhao	
Colorado State Univ.	KEK, Japan	Luigi Mosca	College of William and Mary	
John Holton	Taku Ishida	Francois Pierre	Jeff Nelson	
Jim Sites	Kenzo Nakamura	Sejong University, Korea	WIPP	
Walter Toki	Kyungpook National Univ., Korea	Yeongduk Kim	Roger Nelson	
Dave Warner	Wooyoung Kim	Jungyeon Lee	Bill Thompson	
Bob Wilson	Vitaly Batourine	Jungil Lee		
	Seungwook Jin			
	Dmitriy Nekrasov			

UNO-TAC

- UNO-TAC (Theoretical Advisory Committee)
 - John Bahcall (IAS/Princeton)
 - John Beacom (FNAL)
 - Adam Burrows (U. of Arizona)
 - Maria Concepcion Gonzales-Garcia (Stony Brook)
 - Jim Lattimer (Stony Brook)
 - Bill Marciano (BNL)
 - Jogesh Pati (U. of Maryland)
 - Robert Shrock (Stony Brook)
 - Frank Wilczek (MIT)
 - Edward Witten (IAS/Princeton)

UNO-AC

- UNO-AC (Advisory Committee)
 - Gene Beier (U. Penn)
 - Jacque Bouchez (Saclay)
 - Maury Goodman (ANL)
 - Tom Kirk (BNL)
 - Takahaki Kajita (ICRR)
 - Tony Mann (Tufts)
 - Kenzo Nakamura (KEK)
 - Masayuki Nakahata (ICRR)
 - Yoichiro Suzuki (ICRR)
 - Jeff Wilkes (U. of Washington)
 - Bob Wilson (Colorado State U.)

HEPAP Subpanel (2001) on Long Range Plann

Remarks on Proton Decay and UNC

A.4.1 Proton Decay

If protons decay, their lifetimes are long, so proton decay experiments require massive detectors. A worldwide collaboration has begun to develop the design for a next-generation proton decay experiment. Such a detector should be at least an order of magnitude larger than Super Kamiokande. A next-generation experiment would extend the search for proton decay into the regime favored by unified theories.

Current thinking favors the use of a large water Cherenkov detector, as in the UNO approach. The detector would be situated underground to reduce cosmic-ray backgrounds. A large water Cherenkov detector could simultaneously serve as the long-baseline target for an accelerator neutrino beam. It would also expand our ability to observe neutrinos from supernovae.

Present estimates suggest a price of about \$650M for such a detector. Given its strong science program, and assuming that an affordable design can be reached, we believe it likely that a large proton decay detector will be proposed somewhere in the world, and that U.S. physicists will participate in its construction and utilization. The R&D effort should be completed over the next several years. A decision might be made near the middle of the decade, perhaps in conjunction with a decision on a neutrino superbeam facility.

gadmap for Particle Physics (HEPAP Subpat

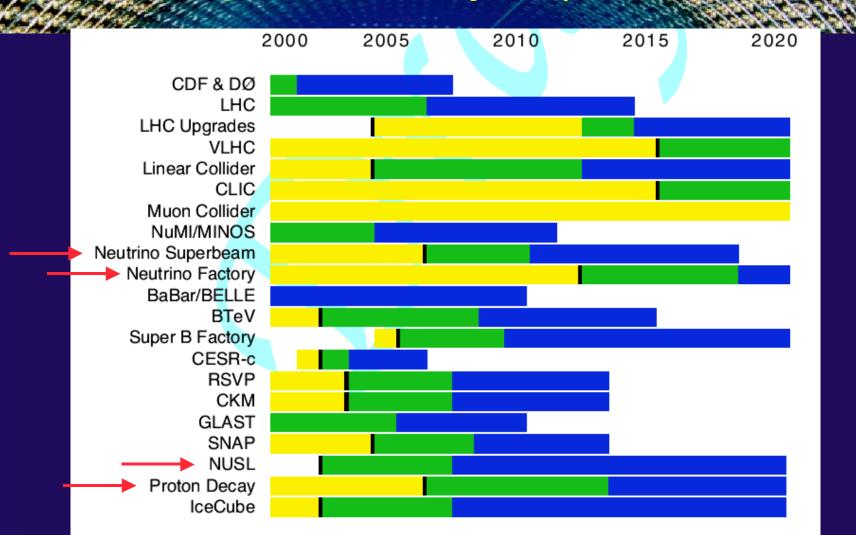


Figure A.1: Timelines for Selected Roadmap Projects. Approximate decision points are marked in black. R&D is marked in yellow, construction in green, and operation in blue. All timelines will be updated as part of the P5 process.

ECFA/BENE, May. 2004

HEPAP Facilities Committee (2003)

Project	Туре	Physics	Cost	Scientific Potential	Proposed Facility	State of Readiness	Possible Time Scale
Linear Collider	Facility	Energy Frontier	\$5B – \$7B	Absolutely Central	Absolutely Central	R&D	2015 Operation
LHC Luminosity Upgrade	Facility	Energy Frontier	\$150M (US Part)	Absolutely Central	Absolutely Central	R&D	2014 Operation
LHC Energy Upgrade	Facility	Energy Frontier	Unknown	Don't Know Enough Yet	Don't Know Enough Yet	R&D	Decision ir Next Decade
SNAP	Experiment	Cosmology	\$400M – \$600M	Absolutely Central	Absolutely Central	R&D	2009 Launch
BTEV	Experiment	Quark Physics	\$120M	Important	Important	Ready for Decision on Construction	2008 Operation
СКМ	Experiment	Quark Physics	\$100M	Important	Important	Ready for Decision on Construction	2008 Operation
Super-B Factory	Facility	Quark Physics	Unknown	Don't Know Enough Yet	Don't Know Enough Yet	R&D	Decision Later This Decade
Double-Beta Decay	Experiment	Neutrino Physics	\$100M	Absolutely Central	Don't Know Enough Yet	R&D	2005 Prototype
Off-Axis Neutrino Detector	Experiment	Neutrino Physics	\$120M	Important	Important	Project Engineering and Design	2010 Operatior
Neutrino Super Beam	Facility	Neutrino Physics	\$250M – \$500M (Accelerator and Beam Only)	Absolutely Central	Don't Know Enough Yet	Project Engineering and Design	Decision Later This Decade
Underground Detector	Facility	Neutrino Physics and Proton Decay	\$500M	Absolutely Central	Don't Know Enough Yet	R&D	Decision Later This Decade
Neutrino Factory	Facility	Neutrino Physics	Unknown	Don't Know Enough Yet	Don't Know Enough Yet	R&D	Decision ir Next Decade

HEP Facilities Summary Table

ECFA/BENE, May. 2004

UNO

DOE 20 Year Plan (Orbach List)

- Nov. 2003: Orbach list
 - Based on the HEPAP facilities committee recommendation
 - 1) Joint DOE/NASA mission on Dark Energy
 - 2) BTeV (a lot to learn from this collaboration)
 - 3) Linear collider
 - 4) Neutrino Superbeam
 - (underground facility noted as an NSF initiative)
 - \Rightarrow UNO was considered as a facility

Report of the Intragency Working Grou on Physics of Universe

- Released in April 2004
- Response to CPU report
- Coordinated by NSTC
- Intragency Working Group
 DOE, NSF, OMB, OSTP
- Summary of Recommendations
 - Ready for Immediate Investment and Directions Known
 - ⇒ Dark Energy
 - ⇒ Dark Matter, Neutrinos and Proton Decay
 - \Rightarrow Gravity

A 21 ST CENTURY FRONTIER FOR DISCOVERY THE PHYSICS OF THE UNIVERSE

A STRATEGIC PLAN FOR FEDERAL RESEARCH AT THE INTERSECTION OF PHYSICS AND ASTRONOMY

ECFA/BENE, May. 2004

NSTC IWG Priotization

Table I. IWG Prioritization			
Quarks with the Cosmos Question	Programmatic Investment Priority		
Ready for Immediate Investment	Direction Known		
Dark Energy	Dark Energy		
Dark Matter	Dark Matter, Neutrinos, & Proton Decay		
Gravity	Gravity		
Neutrinos			
Further Planning and/or R&D Needed	Roadmap Future Investments		
High Density & Temperature Physics	or Exploit Existing Facilities		
Origin of Heavy Elements	Origin of Heavy Elements		
Proton Decay	Birth of the Universe using Cosmic Microwave Background		
The Big Bang	High Density & Temperature Physics		
Ideas Needed or Investment Adequate	High Energy Cosmic Ray Physics		
Cosmic Accelerators			
Extra Dimensions			
New Theories of Light and Matter			

Conclusions

- UNO tackles some of the most important physics questions today w/ potential of major discoveries
- Mature technology: no critical R&D item
 - Ready to be built
- An excellent site exists at the Henderson mine as well as other candidate sites
 - New NSF process to select a NUSEL site has just begun
- BNL VLBL experiment a unique and original idea not considered by any other labs or countries
 - By definition complementary to any other proposed long baseline experiments
 - It has a lot of good merits which can be used in other applications
 - Needs constructive criticisms & checks from the community If built, it will provide a comprehensive nucleon decay and neutrino physics program for the US and world science community for the 21th century

- Intersection of interests from HEP, NP and AP communities; and international community (Japan: Hyper-Kamiokande, Europe: CERN/Fréjus (133 km) initiatives
 - A well organized international effort with a common physics goals and strong mutual support can bring a (or even two) successful experiment(s) somewhere in the world

Comments on Organizing International Effor on Next Generation WC Detector

- Model 1
 - Regional Collaborations
 - ⇒ HyperK in Japan
 - \Rightarrow UNO in US
 - \Rightarrow ??? In Europe
 - Cross referencing of the collaborators
 - \Rightarrow mutual support for local proposals
 - Joint R&D effort for non-site specific common items
 - Formation of an International Steering Committee
 - Advantage: focused regional efforts to bring local enthusiasm
 - Disadvantages: smaller collaborations, proposals can be seen as competing with each other

Comments on Organizing International Effor on Next Generation WC Detector

- Model 2
 - Formation of a World-wide Collaboration
 - \Rightarrow to build one (or two) detectors somewhere in the world
 - ⇒ Frejus-UNO-HyperK

FUHK (!) Bad name

- Advantage: if formed, it will be a powerful collaboration
- Disadvantage: can people truly overcome local interests?
 - \Rightarrow Can prioritization be done without prejudice?
 - \Rightarrow LC dilemma
- "Internationalization" is a word that should be used very cautiously

⇒ should avoid making foreign contributions prerequisite

ECFA/BENE, May. 2004