Interactions of Neutrinos at High and Low Energies

Kevin McFarland University of Rochester NUFACT Summer Institute 12-13 June 2005

"Neutrino Oscillation Experiments" Meta-Outline

- Neutrino Interactions (12 13 June), KSM
- Conventional Neutrino Beams (12 13 June), D. Harris
- Why New Neutrino Beams (12 June), A. Blondel
- High Energy Neutrino Detectors (14 15 June), D. Harris
- Long Baseline Phenomenology (17 18 June), A. Donini
- Low Energy Neutrino Detectors (18 19 June), T. Kajita
- Tutorials follow each lecture

Or at least that <u>was</u> the plan...

As you may have gathered, your lecturers coming from WIN05 at Delphi had some difficulty getting to Anacapri...

		1 Martin	TOTAL STREET, DOIL	INCONT	215	
Flight Number	er Destination		Counter	Gate	Time	5666 ** 9
DA 239	Rome FL	:0	079-11	D5 80Z	1705 -090 8	105 0050
	AZ 7135 Venice A3 326 Iraklion DA 918 Thessaloniki DA 319 Islanbul DA 518 Iraklion DA 718 Rhodes A3 136 Thessaloniki BIE662N Nanies DA 6581 Nykonos V 260 S1. Petersburg	038-040 825 2145 123-123 815 2150 082-096 807 2200 079-105 2210 082-096 801 2210 082-096 801 2210 082-096 801 2210 082-096 811 2240 123-123 805 2250 057-059 R36 2300 082-086 822 2320 057-059 836 2001 082-086 822 2320 057-059 836 2001 082-086 822 2320 082-086 822 836	DY 72TH ANAXOPHZE T.AFFEAJA АКУРОВНКЕ T.AFFEAJA GYAHAN/XTH	OH 301 Tel Ave DH 950 Alexan Alexan DH 570 Hillil Alexan DH 570 Hillil Alexan Alexan 200 Rhode Alexan Black 330 Chani DH DH 600 Corfu DH DH 700 Rhode DH DH 700 Rhode DH DH 720 Kos DH DH 750 Samo	Iv 055-056 ini 079-105 ini 079-105 s 116-132 a 115-132 079-105 079-105 is 079-105 is 079-105 is 079-105 is 079-105 is 079-105 is 079-105	0228 0440 0510 0530 0530 0530 0530 0530 0530 0540 2 0545 5 0545

Of course Olympic Airlines was very helpful... "Hotel Desk"

12-13 June 2005

End of Complaining. Neutrinos, anyone?

These lectures

- Since you haven't yet heard about oscillation experiments, I will start with a minimal introduction to important elements
- Then we will delve into cross-sections
 - First from a theoretical point of view, starting from the basics of weak interactions and applying them to point-like scattering
 - OAs we proceed, the discussion will become increasingly applied.

MINIMAL INTRODUCTION

Ingredients for Oscillations

After the previous lecture(s), you are all experts in the theory of neutrino oscillations.

From a theoretical perspective, how do you do a neutrino oscillation experiment?

Ingredients for Oscillations (cont'd)

From a theoretical perspective, how do you do a neutrino oscillation experiment?

"Prepare neutrinos in a flavor eigenstate."
Conventional, Muon and Beta Sources
"Observe flavor eigenstates at far detector..."
Disappearance and Appearance Experiments
"... through the interactions of neutrinos."
Charged and Neutral Weak Interactions

NEUTRINO BEAMS

Generic Features of v Beams

- Produce weakly decaying, relativistic particles
- Focus them towards detector
- Allow them to decay
- Shield detector from the source

Types of Neutrino Beams

- Conventional: $\pi^+, K^+ \rightarrow \mu^+ \nu_{\mu}$
- Muon Source: $\mu^+ \rightarrow e^{\dagger} v_e v_{\mu}$
- Reactors and "Beta" Beams: ${}^{A}Z \rightarrow {}^{A}(Z+1)e\overline{\nu_{e}}$

Туре	Neutrino Flavors	Flavor Selection	In Use?
Conventional	Muon, neutrino and anti-neutrino	Meson charge	Copiously
Reactors and Beta Beams	Electron neutrino and anti-neutrino	Nucleus. (Anti-nu only at reactors)	A at rest (<5 MeV)
Muon	One from each of: electron, muon, and neutrino and anti-neutrino	Muon charge	μ at rest (~30 MeV)

As you may have gathered, great plans are afoot to create accelerated beams for the latter two types of sources...

Conventional Beams

 π and K mesons primarily decay to muon neutrinos or anti-neutrinos

Omeson sign selects which

e.g.,
$$\pi^+ \to \mu^+ V_{\mu}$$

 $\pi^- \to \mu^- \overline{V}_{\mu}$

Flavor backgrounds come from

OMuon decay

 $\bigcirc K_{e3}$ decay (~7% of $K_{\mu 2}$ decay rate)

OCharm decay (to electron and D_S to τv_{τ})

NuTeV Neutrino Flux

What processes produce neutrinos in this beam?

- \bigcirc Energy of secondaries is ~120 300 GeV.
- \bigcirc Decay pipe is 400m vs. $\gamma c \tau_{\pi} \sim 10$ km.
- $\odot v_{\mu}$ from π^{\pm} , K[±] decays are ~98% of the beam
 - Second hump of spectrum is K[±]. Higher Q of decay.
- Flavor backgrounds (v_e):
 - ~10⁻² from K[±] (K[±]_{e3} BR)
 - ~10⁻³ from other strange
 - Charm is ~10⁻³
 - Muon decay is ~10⁻⁴
 - $ightarrow v_{\tau}$ production is mostly from rare D_s decay. ~10⁻⁵

EXPERIMENTAL OBSERVATIONS

What does one actually measure?

Charged-current interactions of neutrinos

$$\upsilon_l + X \to l^- + X'$$

 These almost always tag the "flavor" of the neutrino at the detector by presence of a particular final state lepton

Neutral current interactions of neutrinos

$$\upsilon_l + X \rightarrow \upsilon_l + X'$$

 Flavor independent (caveat emptor: "as far as we know for the three neutrinos we know and love", LEP I)

Disappearance Measurements

- Compare rate at a far detector to prediction or extrapolation from a near detector to measure transition probability, P.
 - Two major sources of uncertainty
 - Predicted rate at far detector
 - Fractional uncertainty, f, directly limits sensitivity to P>f.
 - Statistics at far detector
 - Sensitivity to oscillation probabilities where $\frac{1-P}{\sqrt{\frac{1}{N}}}$
- No observable CP violation because CPT says...

$$P(v_l \to v_l) = P(\overline{v_l} \to \overline{v_l})$$

Neutral current disappearance implies sterile neutrinos

Appearance Measurements

- Look for increase in neutrinos of a particular flavor, indicating transitions from another flavor w/ probability P.
- Major sources of uncertainty
 - Background, from beam or misidentifications
 - Fractional background uncertainty, f, limits sensitivity to transitions with probability $P > f \frac{N_{\text{background}}}{P > f}$

 $N_{
m initial\,flavor}$

Appearance statistics affect sensitivity as

- Neutrino vs. anti-neutrino rate probes CP violation
- Differences between neutral and charged-current rates signal appearance of neutrinos whose charged current interactions are not observed.

END of MINIMAL INTRODUCTION

partons-v to the world of

NEUTRINO INTERACTIONS

Outline for Neutrino Interactions

Weak interactions and neutrinos

- Elastic and quasi-elastic processes, e.g., ve scattering
- \bigcirc Deep inelastic scattering, (vq scattering)
- The difficulties of being in near thresholds...
- Current & future cross-section knowledge
 What we need to learn and how to learn it

Weak Interactions

Current-current interaction (Fermi 1934)

OPaper rejected by Nature because "it contains" speculations too remote from reality to be of

interest to the reader"

Modern version:

$$H_{weak} = \frac{G_F}{\sqrt{2}} \left[\overline{l} \gamma_{\mu} \left(1 - \gamma_5 \right) \nu \right] \left[\overline{f} \gamma^{\mu} \left(V - A \gamma_5 \right) f \right] + h.c.$$

• $P_L = 1/2(1-\gamma_5)$ is a projection operator onto left-handed states for fermions and righthanded states for anti-fermions

 ${\cal J}^{\mu}{\cal J}_{\mu}$

Helicity and Chirality

Helicity is projection of spin along the particles direction

○ Frame dependent (if massive)

```
The operator: \boldsymbol{\sigma}\cdot\mathbf{p}
```


○ All neutrinos are left-handed

All antineutrinos are righthanded

because of production!

Weak interaction maximally violates parity

- However, *chirality* ("handedness") is Lorentzinvariant
 - Only same as helicity for massless particles.
 - If neutrinos have mass then left-handed neutrino is:
 - Mainly left-helicity
 - But also small right-helicity component ∝ *m/E*
 - Only left-handed charged-leptons (e⁻,μ⁻,τ⁻) interact weakly but mass brings in right-helicity:

$$\pi^{+}(J=0) \rightarrow \mu^{+}(J=\frac{1}{2})v_{\mu}(J=\frac{1}{2})$$

$$\xleftarrow{\mu^{+}}{}^{\bullet} \xrightarrow{V}$$

Kevin McFarland: Interactions of Neutrinos

Two Weak Interactions

 W exchange gives Charged-Current (CC) events and Z exchange gives Neutral-Current (NC) events

Flavor Changing

Flavor Conserving

Electroweak Theory

Standard Model

\bigcirc SU(2) \otimes U(1) gauge theory unifying weak/EM ⇒ weak NC follows from EM, Weak CC

OMeasured physical parameters related to mixing parameter for the couplings, $g'=g \tan \theta_W$

Z Couplings	g_L	<i>g</i> _R	$a^2\sqrt{2}$ M
ν_e , ν_μ , ν_τ	1/2	0	$e = g \sin \theta_W, G_F = \frac{g \sqrt{2}}{8M^2}, \frac{M_W}{M} = \cos \theta_W$
<i>e</i> ,μ,τ	$-1/2 + sin^2 \theta_W$	$sin^2 \theta_W$	$OIW_W IW_Z$
<i>u</i> , <i>c</i> , <i>t</i>	$1/2 - 2/3 \sin^2 \! \theta_W$	$-2/3 \sin^2 \theta_W$	μ^{-} Charged-Current μ^{ν}
<i>d</i> , <i>s</i> , <i>b</i>	$-1/2 + 1/3 \sin^2 \theta_W$	$1/3 \ \text{sin}^2 \theta_W$	

Neutrinos are special in SM
 Right-handed neutrino has NO interactions!

Why "Weak"?

Weak interactions are weak because of the massive W and Z bosons exchange

 $\frac{d\sigma}{dq^2} \propto \frac{1}{(q^2 - M^2)^2}$ q is 4-momentum carried by exchange particle M is mass of exchange particle

At HERA see W and Z propagator effects - Also weak ~ EM strength

Explains dimensions of Fermi "constant"

$$G_{F} = \frac{\sqrt{2}}{8} \left(\frac{g_{W}}{M_{W}} \right)^{2}$$

= 1.166×10⁻⁵ / GeV² (g_W ≈ 0.7)

How Weak is Weak?

- 100 GeV Neutrinos incident on a target
 - $\sigma(ve) \sim 10^{-40}$ and $\sigma(vp) \sim 10^{-36}$ cm² vs. $\sigma(pp) \sim 10^{-26}$ cm²

• Mean free path in a steel absorber is 10 light seconds

"I have done something very bad today by proposing a particle that cannot be detected; it is something no theorist should ever do."

Wolfgang Pauli

Extreme Measures to Overcome Weakness (Reines and Cowan, 1946)

Kevin McFarland: Interactions of Neutrinos

Neutrino-Electron (cont'd) $\sigma_{TOT} = \frac{G_F^2 s}{\pi}$ $= 17.2 \times 10^{-42} cm^2 / GeV \cdot E_v(GeV)$

Why is it proportional to beam energy?

 $s = (\underline{p}_{\nu_{\mu}} + \underline{p}_{e})^{2} = m_{e}^{2} + 2m_{e}E_{\nu} \text{ (e}^{-} \text{ rest frame)}$

 Proportionality to energy is a generic feature of point-like scattering!

Obecause *dσ*/*d*Q² is constant

Neutrino-Electron (cont'd)

Elastic scattering:

$$\nu_{\mu} + e^- \rightarrow \nu_{\mu} + e^-$$

 Coupling to left or righthanded electron

OTotal spin, J=0,1

• Electron-Z⁰ coupling • (LH, V-A): -1/2 + $\sin^2\theta_W \sigma \propto \frac{G_F^2 s}{\pi} \left(\frac{1}{4} - \sin^2\theta_W + \sin^4\theta_W\right)$

 \bigcirc (RH, V+A): sin² θ_{W}

$$\sigma \propto \frac{G_F^2 s}{\pi} \left(\sin^4 \theta_{W} \right)$$

Neutrino-Electron (cont'd)

• What are relative contributions of left *and* right-handed scattering from electron?

Kevin McFarland: Interactions of Neutrinos

Neutrino-Electron (cont'd)

• Electron-Z⁰ coupling $\sigma \propto \frac{G_F^2 s}{\pi} \left(\frac{1}{4} - \sin^2 \theta_W + \sin^4 \theta_W \right)$ • (LH, V-A): -1/2 + $\sin^2 \theta_W$

$$\sigma \propto rac{G_F^2 s}{\pi} \left(\sin^4 heta_W
ight)$$

 \bigcirc (RH, V+A): sin² θ_{W}

Let y denote inelasticity.
Recoil energy is related to
CM scattering angle by

$$y = \frac{E_e}{E_v} \approx 1 - \frac{1}{2}(1 - \cos\theta)$$

$$\int dy \frac{d\sigma}{dy} = \begin{cases} LH: & \int dy = 1\\ RH: \int (1-y)^2 dy = \frac{1}{3} \end{cases}$$

$$\sigma_{TOT} = \frac{G_F^2 s}{\pi} \left(\frac{1}{4} - \sin^2 \theta_W + \frac{4}{3} \sin^4 \theta_W \right) = 1.4 \times 10^{-42} \, cm^2 \, / \, GeV \cdot E_V(GeV)$$

Concept Question #1

Vany

e

 v_{any}

e

. 0

L

The reaction

 $v_{\mu} + e^- \rightarrow v_{\mu} + e^-$

has a much smaller cross-section than

 $\nu_{\rm e} + {\rm e}^- \rightarrow \nu_{\rm e} + {\rm e}^-$

What extra process present in the second makes this so? (Naïve answer)

Show that this increases the rate (precise answer) (Recall from the previous pages...

Concept Question #1

The reaction

$$v_{\mu} + e^- \rightarrow v_{\mu} + e^-$$

has a much smaller cross-section than

$$u_e^{} + e^- \rightarrow v_e^{} + e^-$$

Why is this?

Naïve answer: Because there is both a CC and NC reaction!

More precisely: We have to show the interference between the two is constructive.

The total RH coupling is unchanged because there is no RH weak CC coupling

There are two LH couplings: NC coupling is $-1/2 + \sin^2\theta_W \approx -1/4$ and the CC coupling is -1/2. We add the associated amplitudes... and get $-1 + \sin^2\theta_W \approx -3/4$

Lepton Mass Effects

Let's return to Inverse µ–decay:

 $\nu_{\mu} + e^- \rightarrow \mu^- + \nu_e$

OWhat changes in the presence of final state mass?

pure CC so always left-handed

 BUT there must be finite Q² to create muon in final state!

$$Q_{\min}^2 = m_{\mu}^2$$

See a suppression scaling with (mass/CM energy)²

can be generalized...

What about other targets? vany

Imagine now a proton target р ONeutrino-proton elastic scattering: $v_e + p \rightarrow v_e + p$ O"Inverse beta-decay": $\overline{v}_{e} + p \rightarrow e^{+} + n$ W Oand its close cousin: р $v_e + n \rightarrow e^- + p$ Incident antineutrino Inverse beta-decay (IBD) Gamma ravs was the Reines and Gamma rays Cowan discovery signal

Vany

 e^+

n

Neutron capture

Liquid scintillator and cadmium

Inverse beta decay

Positron annihilation

Proton Structure

• How is a proton different from an electron? • anomalous magnetic moment, $\kappa \equiv \frac{g-2}{2} \neq 1$

• "form factors" related to finite size

McAllister and Hofstadter 1956 188 MeV and 236 MeV electron beam from linear accelerator at Stanford

Determined proton RMS charge radius to be (0.7±0.2) x10⁻¹³ cm

Kevin McFarland: Interactions of Neutrinos

Final State Mass Effects

In IBD, $\overline{v}_e + p \rightarrow e^+ + n$, have to pay a mass penalty *twice*

OM_n-M_p≈1.3 MeV, M_e≈0.5 MeV

What is the threshold?

○ kinematics are simple, at least to zeroth order in M_e/M_n → heavy nucleon kinetic energy is zero

$$s_{\text{initial}} = (\underline{p}_{\nu} + \underline{p}_{p})^{2} = M_{p}^{2} + 2M_{p}E_{\nu} \text{ (proton rest frame)}$$

$$s_{\text{final}} = (\underline{p}_{e} + \underline{p}_{n})^{2} \approx M_{n}^{2} + m_{e}^{2} + 2M_{n}\left(E_{\nu} - (M_{n} - M_{p})\right)$$
Solving...
$$E_{\nu}^{\text{min}} = \frac{(M_{n} + m_{e})^{2} - M_{p}^{2}}{2M_{p}} \approx 1.806 \text{ MeV}$$

Final State Mass Effects (cont'd)

• Define
$$\delta E$$
 as $E_{v} - E_{v}^{min}$, then
 $s_{\text{initial}} = M_{p}^{2} + 2M_{p} \left(\delta E + E_{v}^{min} \right)$
 $= M_{p}^{2} + 2\delta E \times M_{p} + \left(M_{n} + m_{e} \right)^{2} - M_{p}^{2}$
 $= 2\delta E \times M_{p} + \left(M_{n} + m_{e} \right)^{2}$

Remember the suppression generally goes as

$$\xi_{\text{mass}} = 1 - \frac{m_{\text{final}}^2}{\text{s}} = 1 - \frac{\left(M_n + m_e\right)^2}{\left(M_n + m_e\right)^2 + 2M_p \times \delta E}$$
$$= \frac{2M_p \times \delta E}{\left(M_n + m_e\right)^2 + 2M_p \times \delta E} \approx \begin{cases} \frac{\delta E}{\left(M_n + m_e\right)^2} & \text{low energy} \\ 1 - \frac{\left(M_n + m_e\right)^2}{2M_p^2} & \frac{M_p}{\delta E} \end{cases} \text{ high energy}$$

Kevin McFarland: Interactions of Neutrinos

mass suppression is proportional to $\delta E \text{ at low } E_{\nu}, \text{ so get quadratic near threshold}$

Concept Question #2

• Which is closest to the minimum beam energy in which the reaction

$$\nu_{\mu} + e^- \rightarrow \mu^- + \nu_e$$

can be observed?

(a) 100 MeV (b) 1 GeV (c) 10 GeV

(It might help you to remember that $Q_{\min}^2 = m_{\mu}^2$ or you might just want to think about the total CM energy required to produce the particles in the final state.)

Concept Question #2

Which is closest to the minimum beam energy in which the reaction

$$\nu_{\mu} + e^- \rightarrow \mu^- + \nu_e$$

can be observed?

$$Q_{\min}^{2} = m_{\mu}^{2}$$

$$Q^{2} < s = (\underline{p}_{e} + \underline{p}_{v})^{2}$$

$$= (m_{e} + E_{v}, 0, 0, \sqrt{E_{v}^{2} - m_{v}^{2}})^{2} \approx m_{e}^{2} + 2m_{e}E_{v}$$

$$\therefore E_{v} > \frac{m_{\mu}^{2}}{2m} \approx 10.9 \text{ GeV}$$

(a) 100 MeV (b) 1 GeV

12-13 June 2005

Kevin McFarland: Interactions of Neutrinos

Summary and Outlook

• We know ve^{-} scattering and IBD cross-sections!

 In point-like weak interactions, key features are: O do/dQ² is ≈ constant.

• Integrating gives $\sigma \propto E_{v}$

- LH coupling enters w/ d σ /dy \propto 1, RH w/ d σ /dy \propto (1-y)²
 - Integrating these gives 1 and 1/3, respectively
- O Lepton mass effect gives minimum Q²

• Integrating gives correction factor in σ of (1-Q²_{min}/s)

O Structure of target can add form factors

 Deep Inelastic Scattering is also a point-like limit where interaction is v-quark scattering

Neutrino-Nucleon Deep Inelastic Scattering

Neutrino-Nucleon 'n a Nutshell

○ Deep-Inelastic Scattering: (Nucleon broken up) v_{μ} + quark → μ^{-} + quark'

- Neutral Current: Z⁰ exchange
 - Elastic Scattering: (Target unchanged) $v_{\mu} + N \rightarrow v_{\mu} + N$
 - Nuclear Resonance Production: (Target goes to excited state) $\nu_{\mu} + N \rightarrow \nu_{\mu} + N + \pi$ (N^{*} or △)
 - Deep-Inelastic Scattering (Nucleon broken up) v_{μ} + quark → v_{μ} + quark

Scattering Variables

DEEP INELASTIC NEUTRINO SCATTERING

Scattering variables given in terms of invariants

•More general than just deep inelastic (neutrino-quark) scattering, although interpretation may change.

Measured quantities:
$$E_h$$
, E', θ
4 - momentum Transfer²: $Q^2 = -q^2 = -\left(p'-p\right)^2 \approx \left(4EE'\sin^2(\theta/2)\right)_{Lab}$

Energy Transfer:
$$v = (q \cdot P) / M_T = (E - E')_{Lab} = (E_h - M_T)_{Lab}$$

Inelasticity:
$$y = (q \cdot P)/(p \cdot P) = (E_h - M_T)/(E_h + E')_{Lab}$$

Fractional Momentum of Struck Quark : $x = Q^2 / 2M_T v$

Recoil Mass²:
$$W^2 = (q+P)^2 = M_T^2 + 2M_T v - Q^2$$

CM Energy²: $s = (p+P)^2 = M_T^2 + \frac{Q^2}{xy}$
Kevin McFarland: Interactions of Neutrinos

12-13 June 2005

Parton Interpretation of DIS

Mass of target quark

Neutrino scatters off a parton inside the nucleon

In "infinite momentum frame", x is momentum of partons inside the nucleon

 m_q

 $m_{a}^{2} = (xP+q)^{2}$

 $x^2 P^2$

$$x = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{2M_T \nu}$$

So why is cross-section so large?

• (at least compared to ve^{-} scattering!)

Recall that for neutrino beam and target at rest

$$\sigma_{TOT} \approx \frac{G_F^2}{\pi} \int_0^{Q_{\text{max}}^2 \equiv s} dQ^2 = \frac{G_F^2 s}{\pi}$$
$$s = m_e^2 + 2m_e E_v$$

- But we just learned for DIS that effective mass of each target quark is $m_q = xm_{nucleon}$
- So much larger target mass means larger σ_{TOT}

Chirality, Charge in CC v-q Scattering

Total spin determines inelasticity distribution OFamiliar from neutrinoelectron scattering th energy $\frac{d\sigma^{vp}}{dxdy} = \frac{G_F^2 s}{\pi} \left(x d(x) + x u(x)(1-y)^2 \right)$ $\frac{d\sigma^{\overline{v}p}}{dxdy} = \frac{G_F^2 s}{\pi} \left(x d(x) + x u(x) (1-y)^2 \right)$ but what is this "q(x)"?

Neutrino/Anti-neutrino CC each produce particular ∆q in scattering

 $vd \rightarrow \mu^{-}u$

$$\nu u \rightarrow \mu^+ d$$

Factorization and Partons

Factorization Theorem of QCD allows amplitudes for hadronic processes to be written as:

$$A(l+h \to l+X) = \sum_{q} \int dx A(l+q(x) \to l+X) q_h(x)$$

- OParton distribution functions (PDFs) are universal
- OProcesses well described by single parton interactions
- Parton distribution functions not (yet) calculable from first principles in QCD
- Scaling": parton distributions are largely independent of Q² scale, and depend on fractional momentum, x.

Momentum of Quarks & Antiquarks

Momentum carried by quarks

y distribution in Neutrino CC DIS

Concept Question #3

• Given: $\sigma_{CC}^{\nu} \approx \frac{1}{2} \sigma_{CC}^{\nu}$ in the DIS regime (CC) and $\frac{d\sigma(vq)}{dx} = \frac{d\sigma(\overline{vq})}{dx} = 3 \frac{d\sigma(v\overline{q})}{dx} = 3 \frac{d\sigma(\overline{vq})}{dx}$ for CC scattering from quarks or anti-quarks of a given momentum,

and that cross-section is proportional to parton momentum, what is the approximate ratio of antiquark to quark momentum in the nucleon?

(a)
$$\bar{q}/q \sim 1/3$$
 (b) $\bar{q}/q \sim 1/5$ (c) $\bar{q}/q \sim 1/8$

Concept Question #3 • Given: $\sigma_{CC}^{\nu} \approx \frac{1}{2} \sigma_{CC}^{\nu}$ in the DIS regime (CC) and $\sigma(vq) = \sigma(\overline{vq}) = 3\sigma(\overline{vq}) = 3\sigma(\overline{vq})$ (a) $\overline{q} / q \sim 1/3$ | (b) $\overline{q} / q \sim 1/5$ | (c) $\overline{q} / q \sim 1/8$ $\sigma_{v} = \int_{-} dx \left(\frac{d\sigma(vq)}{dx} + \frac{d\sigma(v\overline{q})}{dx} \right)$ $\sigma_{\overline{v}} = \int dx \left(\frac{d\sigma(\overline{v}q)}{dx} + \frac{d\sigma(\overline{v}\overline{q})}{dx} \right) = \int dx \left(\frac{d\sigma(vq)}{3dx} + \frac{3d\sigma(v\overline{q})}{dx} \right)$ $\therefore \int_{-} dx \left(\frac{d\sigma(vq)}{dx} + \frac{d\sigma(v\overline{q})}{dx} \right) = 2 \int_{-}^{-} dx \left(\frac{d\sigma(vq)}{3dx} + \frac{3d\sigma(v\overline{q})}{dx} \right)$ $\frac{1}{3}\int_{-\pi}^{\pi} dx \frac{d\sigma(vq)}{dx} = 5\int_{-\pi}^{\pi} dx \frac{d\sigma(vq)}{dx} = \frac{5}{3}\int_{-\pi}^{\pi} dx \frac{d\sigma(vq)}{dx}$

12-13 June 2005

Kevin McFarland: Interactions of Neutrinos

Momentum of Quarks & Antiquarks

Or... Structure Functions (SFs)

- A model-independent picture of these interactions can also be formed in terms of nucleon "structure functions"
 - All Lorentz-invariant terms included

Approximate zero lepton mass (small correction)

$$\frac{d\sigma^{\nu,\overline{\nu}}}{dxdy} \propto \left[y^2 2xF_1(x,Q^2) + \left(2 - 2y - \frac{M_T xy}{E}\right)F_2(x,Q^2) \pm y(2 - y)xF_3(x,Q^2) \right]$$

- For massless free spin-1/2 partons, one simplification...
 - \bigcirc Callan-Gross relationship, 2xF₁=F₂
 - Implies intermediate bosons are completely transverse

Can parameterize transverse cross-section by R_L .

•Callan-Gross violations, M

•NLO pQCD, $g \rightarrow qq$

$$R_L = \frac{\sigma_L}{\sigma_T} = \frac{F_2}{2xF_1} \left(1 + \frac{4M_T^2 x^2}{Q^2} \right)$$

SFs to PDFs

 Can relate SFs to PDFs in naïve quark-parton model by matching y dependence

O Assuming Callan-Gross, massless targets and partons...

F₃: 2y-y², 2xF₁=F₂: 2-2y+y²

$$2xF_{1}^{\nu p,CC} = x \left[d_{p}(x) + \overline{u_{p}}(x) + s_{p}(x) + \overline{c_{p}}(x) \right]$$

$$xF_{3}^{\nu p,CC} = x \left[d_{p}(x) - \overline{u_{p}}(x) + s_{p}(x) - \overline{c_{p}}(x) \right]$$

- In analogy with neutrino-electron scattering, CC only involves left-handed quarks
- However, NC involves both chiralities (V-A and V+A)
 - Also couplings from EW Unification
 - O And no selection by quark charge

$$2xF_{1}^{\nu p,NC} = x \left[(u_{L}^{2} + u_{R}^{2}) \left(u_{p}(x) + \overline{u_{p}}(x) + c_{p}(x) + \overline{c_{p}}(x) \right) + (d_{L}^{2} + d_{R}^{2}) \left(d_{p}(x) + \overline{d_{p}}(x) + s_{p}(x) + \overline{s_{p}}(x) \right) \right]$$

$$xF_{3}^{\nu p,NC} = x \left[(u_{L}^{2} - u_{R}^{2}) \left(u_{p}(x) - \overline{u_{p}}(x) + c_{p}(x) - \overline{c_{p}}(x) \right) + (d_{L}^{2} - d_{R}^{2}) \left(d_{p}(x) - \overline{d_{p}}(x) + s_{p}(x) - \overline{s_{p}}(x) \right) \right]$$

12-13 June 2005
Kevin McFarland: Interactions of Neutrinos
58

Isoscalar Targets

Heavy nuclei are roughly neutron-proton isoscalar

- Isospin symmetry implies $u_p = d_n, d_p = u_n$
- Structure Functions have a particularly simple interpretation in quark-parton model for this case...

$$\frac{d^{2}\sigma^{\nu(\nu)N}}{dxdy} = \frac{G_{F}^{2}s}{2\pi} \left\{ \left(1 + (1-y)^{2} \right) F_{2}(x) \pm \left(1 - (1-y)^{2} \right) x F_{3}^{\nu(\overline{\nu})}(x) \right\}$$

$$F_{2}^{\nu(\overline{\nu})N,CC}(x) = x(u(x) + d(x) + \overline{u}(x) + \overline{d}(x) + s(x) + \overline{s}(x) + c(x) + \overline{c}(x) = xq(x) + x\overline{q}(x)$$

$$xF_{3}^{\nu(\overline{\nu})N,CC}(x) = \frac{xu_{Val}(x) + xd_{Val}(x)}{where \ u_{Val}(x)} \pm 2x(s(x) - c(x))$$
where $u_{Val}(x) = u(x) - \overline{u}(x)$

Neutrino-Nucleon Deep Inelastic Scattering

BONUS Example!

Example: NuTeV NC/CC Ratio

 NuTeV experiment measures ratios of neutral to charged current cross-sections on an isoscalar target to extract NC couplings

W-q coupling is I_3

Llewellyn Smith Formulae $R^{\nu(\bar{\nu})} = \frac{\sigma_{NC}^{\nu(\bar{\nu})}}{\sigma_{CC}^{\nu(\bar{\nu})}} = \left(\left(u_L^2 + d_L^2 \right) + \frac{\sigma_{CC}^{\bar{\nu}(\nu)}}{\sigma_{CC}^{\nu(\bar{\nu})}} \left(u_R^2 + d_R^2 \right) \right)$

Z-q coupling is I_3 -Qsin² θ_W

- Holds for isoscalar targets of u and d quarks only
 - Heavy quarks, differences between u and d distributions are corrections
- Isospin symmetry causes PDFs to drop out, even outside of naïve quark-parton model

NuTeV at Work...

NuTeV Fit to R^v and R^{vbar}

• NuTeV result:

 $\sin^2 \theta_W^{(on-shell)} = 0.2277 \pm \pm 0.0013(stat.) \pm 0.0009(syst.)$ $= 0.2277 \pm 0.0016$

(Previous neutrino measurements gave 0.2277 ± 0.0036)

- Standard model fit (LEPEWWG): 0.2227 ± 0.00037 A 3σ discrepancy

Neutrino-Nucleon Deep Inelastic Scattering

BONUS topics!

Strong Interactions among Partons

Q² Scaling fails due to these interactions

$$\frac{\partial q(x,Q^2)}{\partial \log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dy}{y}$$
$$\left[P_{qq}\left(\frac{x}{y}\right) q(y,Q^2) + P_{qg}\left(\frac{x}{y}\right) g(y,Q^2) \right]$$

•Pqq(x/y) = probability of finding a quark with momentum x within a quark with momentum y

•Pqq(x/y) = probability of finding a q with momentum x within a gluon with momentum y

$$P_{qq}(z) = \frac{4}{3} \frac{1+z^2}{(1-z)} + 2\delta(1-z)$$
$$P_{gq}(z) = \frac{1}{2} \left[z^2 + (1-z)^2 \right]$$

 \boldsymbol{x}

Scaling from QCD

Lepton Mass Effects in DIS Region

Recall that final state mass effects enter as corrections:

- relevant center-of-mass energy is that of the "point-like" neutrinoparton system
- this is high energy approx.
- For ν_τ charged-current, there is a threshold of

$$s_{\min} = (m_{\text{nucleon}} + m_{\tau})^2$$

where

$$s_{initial} = m_{\text{nucleon}}^2 + 2E_{\nu}m_{\text{nucleon}}$$
$$\therefore E_{\nu} > \frac{{m_{\tau}}^2 + 2m_{\tau}m_{\text{nucleon}}}{2m_{\text{nucleon}}} \approx 3.5 \text{ GeV}$$

" m_{nucleon} " is M_T elsewhere, but don't want to confuse with m_{τ} ...

Kevin McFarland: Interactions of Neutrinos

(Kretzer and Reno)

This is threshold for partons with *entire* nucleon momentum ○ effects big at higher E_v also

Heavy Quark Production

 Scattering from heavy quarks is more complicated.

 Charm is heavier than proton; hints that its mass is not a negligible effect...

$$(q+\zeta p)^2 = p'^2 = m_c^2$$

$$q^2 + 2\zeta p \bullet q + \zeta^2 M^2 = m_c^2$$

•

Therefore
$$\zeta \cong \frac{-q^2 + m_c^2}{2p \bullet q}$$

$$\zeta \cong \frac{Q^2 + m_c^2}{2M\nu} = \frac{Q^2 + m_c^2}{Q^2 / x}$$

$$\zeta \cong x \left(1 + \frac{m_c^2}{Q^2} \right)$$

"slow rescaling" leads to kinematic suppression of charm production

Not your father's fractional momen

$$\begin{array}{c}
\nu_{\mu} & \mu^{-} \\
W^{+} & (q) \\
S, d \\
(\xi p) & (p') \\
N \\
(p) \\
\end{array}$$

Neutrino Induced Dilepton Events

Neutrino induced charm production has been extensively studied

- Emulsion/Bubble Chambers (low statistics, 10s of events)
- "Dimuon events" (high statistics, 1000s of events)

$$\begin{array}{c} \nu_{\mu} + \begin{pmatrix} d \\ s \end{pmatrix} \rightarrow \mu^{-} + c + X \\ c \rightarrow \mu^{+} + \nu_{\mu} + X' \\ \hline \overline{\nu}_{\mu} + \begin{pmatrix} \overline{d} \\ \overline{s} \end{pmatrix} \rightarrow \mu^{+} + \overline{c} + X \\ c \qquad \overline{c} \rightarrow \mu^{-} + \overline{\nu}_{\mu} + X' \\ \end{array}$$

d, s quark distributions

|Vcd|

- Kinematic suppression and fragmentation
- Effects can be separated and measured

NuTeV Dimuon Sample

 Extract production suppression and separate measurement of strange and anti-strange quark distributions

QCD at Work: Strange Asymmetry?

An entertaining aside...

- The strange sea can be generated perturbatively from g s+sbar.
- BUT, perturbative generation of differences between s and sbar are suppressed, so s & sbar difference probe non-perturbative ("intrinsic") strangeness o
 - Models: Signal&Thomas, Brodsky&Ma, etc,
- NuTeV has tested this
 - NB: NOT independent of what is assumed about non-strange sea, so caution in applying this is warranted
- NuTeV measures:

$$\int dx [x(s - \bar{s})] = -0.0027 \pm 0.0013$$

c.f., $\int dx [x(s + \bar{s})] \approx 0.02$

(Brodsky & Ma, s-sbar)

GeV Cross-Sections
What's special about it? Why do we care?

- Remember this picture?
 - 1-few GeV is exactly where these additional processes are turning on

○ It's not DIS yet! Final states & threshold effects matter

• Why is it important? Example: T2K

Goals:

- 1. $\nu_{\mu} \rightarrow \nu_{e}$
- 2. v_{μ} disappearance
- $\mathsf{E}_{_{\rm V}}$ is 0.4-2.0 GeV

Kevin McFarland: Interactions of Neutrinos

How do cross-sections effect oscillation analysis? $v_{\mu} + n \rightarrow 0$

0

(fig.

0.5

courtesv

• v_{μ} disappearance

- at Super-K reconstruct these events by muon angle and momentum (proton below Cerenkov threshold in H₂O)
- other final states with more particles below threshold ("non-QE") will disrupt this reconstruction
- T2K must know these events at few % level to do disappearance $\Delta m^2 = 2.5 \times 10^{-3} eV^2$ $\Delta m^2 = 2.0 \times 10^{-3} eV^2$ No oscillation OA 2.5 deg. ~ svents/50MeV/22.5kt/5y 0 00 00 00 00 analysis to 80 60 measure 60 40 $\Delta m_{23}^2, \theta_{23}$ non-QE 40 20 20

1.5

Kevin McFarland: Interactions of Neutrinos

rec. Ev (GeV

2

0

Havato)

0.5

1 1.5 2 rec. Ev (GeV)

(E_µ, p_µ)

θ

0

0

0.5

2

(assuming sin² 20₂₂=1.0)

1.5

rec. Ev (GeV)

How do cross-sections effect oscillation analysis?

v_e appearance

 different problem: signal rate is very low so even rare backgrounds contribute!

(Quasi-)Elastic Scattering

• Elastic scattering leaves a single nucleon in the final state • CC "quasi-elastic" easier to observe $vn \rightarrow l^- p$

 $\nu_{\mu} n \rightarrow \mu^{-} p$

 $vn \rightarrow l^{-}p$ $\bar{v}p \rightarrow l^{+}n$ $v N \rightarrow v N$

- State of data is marginal
 - No free neutrons implies nuclear corrections
 - Low energy statistics poor
- Cross-section is calculable
 - But depends on incalculable formfactors
- Theoretically and experimentally constant at high energy
 - I GeV² is scale of Q² limit

Hmm... What was that last cryptic remark?

Theoretically and experimentally constant at high energy
 1 GeV² is scale of Q² limit

a maximum Q² independent of beam energy \Rightarrow constant σ_{TOT}

Elastic Scattering (cont'd)

 $\begin{array}{c}
\nu n \to l^{-} p \\
\overline{\nu} p \to l^{+} n \\
\stackrel{(-)}{\nu} N \to \nu N
\end{array}$

How does nucleon structure impact elastic scattering?

C.H. Llewellyn Smith, Phys. Rep. 3C, 261 (1972) $< N'|J_{\mu}|N > = \overline{u}(N') \left[\gamma_{\mu}F'_{V}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}\xi F_{V}^{2}(q^{2})}{2M} + \gamma_{5}\gamma_{\mu}F_{A}(q^{2}) \right] u(N)$ $F_{V}(q^{2}) \sim \frac{1}{(1-q^{2}/M_{V}^{2})^{2}} \quad F_{A}(q^{2}) = \frac{F_{A}(0)}{(1-q^{2}/M_{A}^{2})^{2}} \quad \text{"dipole approximation"}$ $\Leftrightarrow \mathbf{M}_{A} = \mathbf{1.032} \text{ GeV}$ $\Leftrightarrow \mathbf{M}_{V} = \mathbf{0.84} \text{ GeV}$ $\Leftrightarrow \mathbf{M}_{V} = \mathbf{0.84} \text{ GeV}$ $\Leftrightarrow \mathbf{F}_{A}(q^{2}) = \frac{F_{A}(0)}{(1-q^{2}/M_{A}^{2})^{2}}; \mathbf{F}_{A}(0) = -\mathbf{1.25}$ Parameters $here in IBD discussion (g_{V} and g_{A})$

"Form factors" modify vanilla V-A prediction of point-like scattering in Fermi theory

○ vector part can be checked in electron elastic scattering

Quasi-Elastic Signature

Fine segmented Solid Plastic Scintillator w/ wavelength shifting (WLS) fibers

Simulation of new K2K "SciBar" detector

Low W, the Resonance Region

- Intermediate to elastic and DIS regions is a region of resonance production
 - Recall mass² of hadronic final state is given by $W^2 = M_T^2 + 2M_T v - Q^2 = M_T^2 + 2M_T v (1-x)$

 At low energy, nucleon-pion states are dominated by N* and D resonances

Leads to cross-section dominated by discrete
 W² values

Resonance Region Data

 Data here, again, is impressively imprecise
 This will be a problem if details of cross-sections are needed where resonance production is dominant. *Need differential distributions*!
 ~1-2 GeV important for T2K (background), NOvA (signal)

12-13 June 2005

How to measure resonance region cross-sections?

 Need a high granularity detector (like SciBar) but in a higher energy beam and with improved containment of γ, π[±], μ

MINERvA at NuMI

○ "chewy center" (active target)

Owith a crunchy shell of muon, hadron and EM absorbers 12-13 June 2005 Kevin McFarland: Interactions of Neutrinos

What can MINERvA see?

With high granularity, can reconstruct a broad variety of exclusive final states

Even better...

A Liquid Ar TPC offers near bubble chamber precision...

Hard to build!

Quark-Hadron Duality

- Bloom-Gilman Duality is the relationship between quark and hadron descriptions of reactions. It reflects:
 Ink between *confinement* and *asymptotic freedom*
 - transition from non-perturbative to perturbative QCD

$$R = N_C \sum_{q \neq s > m_q^2} \left(Q_q^{EM} \right)^2 + O(\alpha_{EM} + \alpha_s)$$

but of course, final state is really sums over discrete hadronic systems

12-13 June 2005

Kevin McFarland: Interactions of Neutrinos

Concept Question #4

A difficulty in relating cross-sections of electron scattering (photon exchange) to charged-current neutrino scattering (W[±] exchange) is that some e-scatting reactions have imperfect v-scattering analogues.

Write all possible v_{μ} CC reactions involving the same target particle and isospin rotations of the final state for each of the following...

(a)
$$e^{-}n \rightarrow e^{-}n$$

(b) $e^{-}p \rightarrow e^{-}p$
(c) $e^{-}p \rightarrow e^{-}n\pi^{+}$
(d) $e^{-}n \rightarrow e^{-}p\pi^{-}$

Kevin McFarland: Interactions of Neutrinos

Concept Question #4

Write all possible v reactions involving the same target particle and isospin rotations of the final state for each of the following...

(b)
$$e^{-}n \rightarrow e^{-}n$$

 $V_{\mu}n \rightarrow \mu^{-}p$
(b) $e^{-}p \rightarrow e^{-}p$
there are none!
(c) $e^{-}p \rightarrow e^{-}n\pi^{+}$
 $V_{\mu}p \rightarrow \mu^{-}p\pi^{+}$
(d) $e^{-}n \rightarrow e^{-}p\pi^{-}$
 $V_{\mu}n \rightarrow \mu^{-}n\pi^{+}$
 $V_{\mu}n \rightarrow \mu^{-}p\pi^{0}$

Cross-Sections on Nucleons in a Nucleus

Nuclear Effects in DIS

- Well measured effects in charged-lepton DIS
 - Maybe the same for neutrino DIS; maybe not... all precise neutrino data is on Ca or Fe targets!
 - Conjecture: these can be absorbed into effective nucleon PDFs in a nucleus Anti-shadowing

Nuclear Effects in Elastic Scattering

Two effects

 In a nucleus, target nucleon has some initial momentum which modifies the observed scattering

- Often handled in a "Fermi Gas" model of nucleons filling available states up to some initial state Fermi momentum, k_F
- Outgoing nucleon can interact with the target
 - Usually treated as a simple binding energy
 - Also, Pauli blocking... states are already filled with identical nucleon
 - However other final states can contribute to "quasi-elastic" scattering through absorption in the nucleus...
- Theoretical uncertainties are large
 - At least at the 10% level
 - If precise knowledge is needed for target (e.g., water, liquid argon, hydrocarbons), dedicated measurements will be needed
 - Most relevant for low energy experiments

And what does the data look like?

First glimpses at quasi-elastic rich low Q² region on C nuclei...

Q2 distribution for K2K SciBar detector

Q2 distribution for MiniBooNE

Data are, not surprisingly, suggesting nuclear effects are not well modeled

- How does nucleus affect π⁰ production (v_e background)?
- Rescattering. Absorption.
- Must measure to predict v_e backgrounds!

12-13 June 2005

do/dP_a (fb/GeV)

0.5

0

 π^*

0.1

0.2

(b)

0.4

P_ (GeV)

0.5

0.3

0.8

0.7

0.6

Nuclear Effects in IBD

- There is a complicated nuclear physics phenomenology which I don't care to detail here
- Suffice it to say that the form factors are not as simple to calculate

 $\Delta J=0$ (Fermi Trans.), $\Delta J = \pm 1$ (Gamow-Teller Trans.)

- Threshold energies are less trivial
 - sometimes multiple states
- Also have corrections due to finite size of nucleus and electron screening

3/2-

 $3/2^{+}$

37CI

⁴⁰Ar

 0^{+}

Some Common IBD Nuclei

here are some nuclei historically important for Solar neutrino experiments

Experiment	Nuclear Target	Reaction	σ ₀ [10 ⁻⁴⁶ cm ²]	∆E _{nucl} [MeV] (no det. Thres.)
GALLEX/GNO SAGE	⁷¹ Ga ₃₃	$v_e + {}^{71}Ga \rightarrow e^- + {}^{71}Ge$	8.611 ± 0.4% (GT)	0.2327
HOMESTAKE	³⁷ Cl ₁₇	$v_e + {}^{37}Cl \rightarrow e^- + {}^{37}Ar$	1.725 (F)	0.814
SNO	$^{2}H_{1}$	$v_e + {}^2H \rightarrow e^- + p + p$	(GT)	1.442
ICARUS	⁴⁰ Ar ₁₈	$v_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$	148.58 (F) 44.367 (GT₂) 41.567 (GT ₆) 	1.505 +

table courtesy F. Cavana

Concept Question #5 Two questions with (*hint*) related answers...

1. Remember that W² is...

$$W^{2} = M_{P}^{2} + 2M_{P}\nu - Q^{2}$$

= $M_{P}^{2} + 2M_{P}\nu (1 - x)$

p (1-x)P

the square of the invariant mass of the $\$ $\$ $\$ $\$) hadronic system. ($v=E_v-E_{\mu}$; x is the parton fractional momentum) It can be measured, as you see above with only leptonic quantities (neutrino and muon 4-momentum).

In neutrino scattering on a scintillator target, you observe an event with a recoiling proton and with W reconstructed from the leptonic variables that is $< M_p$. Explain this event.

2. In the same scintillator target, you observe the reaction... $\nu_{\mu}^{12}C \rightarrow \mu^{-}p\pi^{-}$ + remant nucleus Why is this puzzling? Explain what happened.

Concept Question #5

Both phenomena occur because of nuclear effects!

1.
$$M_P > W^2 = M_P^2 + 2M_P v (1-x)$$

can only be true if x>1.

That means the fractional momentum by the struck target parton is >1! This can only happen for in a nucleon boosted towards the collision in the CM frame by interactions within the nucleus ("Fermi momentum")

$$P$$
 $(1-x)P$

 μ^{-}

 π^0

W

nucleus

 Δ^+

 ν_{μ}

2.
$$v_{\mu}^{12}C \rightarrow \mu^{-}p\pi^{-} + \text{remant nucleus}$$

seems to be nonsense. It is
forbidden to occur off of a proton or a
neutron target by charge conservation!
But remember

reinteraction of pions!

 π^{-}

Connections to Low Energy and Ultra-High Energy Cross-Sections

What is Different at New Energies?

 At 1-few GeV, crosssection makes a transition between DIS-like and resonant/elastic

 Why? "Binding energy" of target (nucleon) is ~1 GeV, comparable to mean Q²

What are other thresholds?

- Binding energy of nucleus is >>(M_n - M_p)≈1 MeV, typically 1/10ths 10s of MeV
- Binding energies of atoms are $<~Z^2m_ec^2\alpha_{EM}/2~10-10^5 \text{ eV}$
- O Binding energies of v, l[±], quarks (into hypothetical constituents that we haven't found yet) are > 10 TeV

Example: SNO

Three reactions for observing v from sun (E_v ~ few MeV

ES $v_x + e^- \Rightarrow v_x + e^-$

Example: Ultra-High Energies

 At energies relevant for UHE Cosmic Ray studies (e.g., IceCube, ANITA)

 \bigcirc v-parton cross-section is dominated by high Q², since $d\sigma/dQ^2$ is constant

- at high Q², scaling violations have made most of nucleon momentum carried by sea quarks
- see a rise in σ / E_{ν} from growth of sea at low x
- neutrino & anti-neutrino cross-sections nearly equal

 Until Q²»M_W², then propagator term starts decreasing and cross-section becomes constant

 $\frac{d\sigma}{da^2} \propto \frac{1}{(a^2 - M^2)^2}$

Example: Ultra-High Energies

 Unless, of course, non-SM processes are excited! E.g., structure of quark or leptons, black holes from extra dimensions, etc.

OThen no one knows what to expect

Conclusions

What Should I Remember from This?

- Understanding neutrino interactions is key to precision measurements of neutrino oscillations at accelerators
- Weak interactions couple to single chirality of fermions
 Consequences for scattering on point-like particles
- Neutrino scattering rate proportional to energy
 Point-like target (electron, quark), below real boson exchange
- Target (proton, nucleus) structure is a significant complication to theoretical prediction of cross-section
 - Particularly problematic near inelastic thresholds
 - can learn things by analogy with DIS (duality) and electron scattering, but improved neutrino cross-section measurements are required by next generation oscillation experiments