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“Neutrino Oscillation
Experiments” Meta-Outline

Neutrino Interactions (12 — 13 June), KSM

Conventional Neutrino Beams (12 — 13 June), D. Harris
Why New Neutrino Beams (12 June), A. Blondel

High Energy Neutrino Detectors (14 — 15 June), D. Harris
Long Baseline Phenomenology (17 — 18 June), A. Donini
Low Energy Neutrino Detectors (18 — 19 June), T. Kajita

Tutorials follow each lecture
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Or at least that was the plan...

As you may have gathered, your lecturers

coming from WINOS at Delphi had some difficulty
getting to Anacapiri...
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Of course Olympic Airlines was very
helpful...

— - “Hotel Desk”
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Courteous
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Start Here Staff
‘ Assisting Us
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-2 Yo »are the most r‘mPO"fa”t'

_ LR Long delays g
. It could have been worse! (et asmEne s
v/ Who knows what fate e e msabrontiatns

Brussels kept us from? b,
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End of Complaining.
Neutrinos, anyone?
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These lectures

Since you haven't yet heard about oscillation
experiments, | will start with a minimal
iIntroduction to important elements

Then we will delve into cross-sections

First from a theoretical point of view, starting
from the basics of weak interactions and
applying them to point-like scattering

As we proceed, the discussion will become
increasingly applied.
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MINIMAL INTRODUCTION
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Ingredients for Oscillations

After the previous lecture(s), you are all experts
In the theory of neutrino oscillations.

From a theoretical perspective, how do you do a
neutrino oscillation experiment?
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Ingredients for Oscillations (cont’d)

From a theoretical perspective, how do you do a
neutrino oscillation experiment?

“Prepare neutrinos in a flavor eigenstate.”

Conventional, Muon and Beta Sources
“Observe flavor eigenstates at far detector...”

Disappearance and Appearance Experiments
“... through the interactions of neutrinoes.”

Charged and Neutral Weak Interactions
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NEUTRINO BEAMS

Kevin McFarland: Interactions of Neutrinos

10



Generic Features of vBeams

Protons Target Horns Decay Pipe Absor ber Detector
Rock
| [y
o
— - ——— | |
B

Produce weakly decaying, relativistic particles
Focus them towards detector

Allow them to decay

Shield detector from the source
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Types of Neutrino Beams

Conventional: z*,K* - uf
Muon Source: x" —efviv.

| 4

U

13 ”” . T
Reactors and “Beta” Beams: *Z—>*(Z +1)efv
Type Neutrino Flavors Flavor Selection | In Use?
Conventional | Muon, neutrino and anti-neutrino Meson charge Copiously
Reactors and | Electron neutrino and anti-neutrino | Nucleus. (Anti-nu A at rest
Beta Beams only at reactors) (<5 MeV)
Muon One from each of: electron, muon, | Muon charge u at rest
and neutrino and anti-neutrino (~30 MeV)

As you may have gathered, great plans are afoot to create
accelerated beams for the latter two types of sources...
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Conventional Beams

n and K mesons primarily decay to muon
neutrinos or anti-neutrinos

meson sign selects which
e.d., + +
T —>HV,
T —D>HV,
Flavor backgrounds come from
Muon decay

Kes decay (~7% of K , decay rate)
Charm decay (to electron and Dg to tv,)
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How to
make a

neutrino  EXample: NuTeV

beam

Fermilab

Every 60 seconds Protons hit

BeO target

1013 protons

\

2x 1012 pi/kaons

LK >y

« Beam is very pure
(Vin v mode 3x1074,
v in ¥ mode 4x1073)

I km of
dirt absorbs
HUONS

e Beam has ~1.6%

. . )
3x10* neatnnos electron neutrinos

30 Neotrino Interactions

in 690 tons!
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NuTeV Neutrino Flux

What processes produce neutrinos in this beam?
Energy of secondaries is ~120 — 300 GeV.
Decay pipe is 400m vs. yct_~ 10 km.
v, from n*, K* decays are ~98% of the beam
Second hump of spectrum is K*. Higher Q of decay.

NuTeV Neutrino Flux Prediction

o
2]

Flavor backgrounds (v,):
~10-2 from K* (K*,; BR)
~10- from other strange
Charm is ~10-3 50 o0 150 200 'Ef(éeoev)z,ém S0 70 #0500
Muon decay is ~10-4

v. production is mostly
from rare D, decay. ~10-°

V

| -

<
<

E,xd/dE, (/10° POT)
5

L5

E,xd®/dE, (/10° POT)
5, .
[T
;)N

- 1%

98%

o

o

1.6%

| . | I | ] I
50 100 150 200 250 300 350 400 450 500

E, (GeV)
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EXPERIMENTAL OBSERVATIONS



What does one actually measure?

Charged-current interactions of neutrinos

v+X >+ X’

These almost always tag the “flavor” of the neutrino at
the detector by presence of a particular final state lepton

Neutral current interactions of neutrinos
v+ X >+ X'

Flavor independent (caveat emptor: “as far as we know
for the three neutrinos we know and love”, LEP )
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Disappearance Measurements

Compare rate at a far detector to prediction or
extrapolation from a near detector to measure
transition probability, P.

Two major sources of uncertainty

Predicted rate at far detector
Fractional uncertainty, f, directly limits sensitivity to P>f.

Statistics at far detector 1
Sensitivity to oscillation probabilities where 1-P <3

No observable CP violation because CPT says...
P(vi »>v)=P(, > v)
Neutral current disappearance implies sterile neutrinos
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Appearance Measurements

Look for increase in neutrinos of a particular flavor,
indicating transitions from another flavor w/ probability P.

Major sources of uncertainty

Background, from beam or misidentifications

Fractional background uncertainty, f, limits sensitivity to

transitions with probability o N packground

initial flavor

1

Appearance statistics affect sensitivity as
Neutrino vs. anti-neutrino rate probes CP violation

Differences between neutral and charged-current rates
signal appearance of neutrinos whose charged current
Interactions are not observed.
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END of MINIMAL INTRODUCTION

partons-v to the world of

NEUTRINO INTERACTIONS

Kevin McFarland: Interactions of Neutrinos



Outline for Neutrino Interactions

Weak interactions and neutrinos
Elastic and quasi-elastic processes, e.g., ve scattering

Deep inelastic scattering, (vq scattering)
The difficulties of being in near thresholds...

Current & future cross-section knowledge
What we need to learn and how to learn it
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Weak Interactions

G
Current-current interaction 7w :T;f 7,
(Fermi 1934)

Paper rejected by Nature because “it contains

speculations too remote from reality to be of
Interest to the reader”

Modern version:
G. _
vaeak :TZ[I Y (1_7/5)‘/:”:1:7# (V —A7/5) f:| +h.c.

R = 1/2(1— 7/5) IS a projection operator onto
left-handed states for fermions and right-
handed states for anti-fermions
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Helicity and Chirality

Helicity is projection of spin y I-‘!owever, chir”allity
along the particles direction ( handedness ) is Lorentz-
Frame dependent (if massive) ~ Invariant

— Only same as helicity for
massless particles.

right-helicity left-helicity _
 If neutrinos have mass then

left-handed neutrino is:

The operator: ¢ - p

Neutrinos only interact weakly — Mainly left-helicity
with a (V-A) interaction — But also small right-helicity
All neutrinos are left-handed component oc m/E
All antineutrinos are right-  Only left-handed charged-leptons
handed _ (e-,u-,t-) interact weakly but
because of production! mass brings in right-helicity:
Weak interaction maximally
. | t t _ I(rt=e v,
violates parity ) ) 1 1 Ripeory = ﬁ%
71 =0)>u Q=30 =3 o2 22
ut v = () Gormi?)

& N
N\ ® 7

=123 x 1074
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Two Weak Interactions

W exchange gives Charged-Current (CC) events and

Z exchange gives Neutral-Current (NC) events
Charged-Current (CC) Neutral-Current (NC)

In Charged_cu rrent eventS, Interactions Interactions
Neutrinos

Flavor of outgoing lepton »
tags flavor of neutrino \?/
Charge of outgoing lepton

determines if neutrino or Anti-Neutrinos
antineutrino

%

" = v,

\{
" = vy /J\\

Flavor Changing Flavor Conserving

Quarks

=
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Electroweak Theory
Standard Model
SU(2) ® U(1) gauge theory unifying weak/EM
— weak NC follows from EM, Weak CC

Measured physical parameters related to mixing
parameter for the couplings, g’=g tang,,

Z Couplings oL Or 2

. 2 M
Ve, Vi, Ve 1/2 0 e=gsing,, G, _gM{’ I\/IW = C0S 6,
e, ~1/2 + sin%0,, sin’0,, W z
u,c,t 1/2 = 2/3 sin®0y, —2/3 sin“By ~~ _ Charged-Current _ »-
d,s,b —1/2 + 1/3 sin*0, 1/3 sin’0,, >vaﬂ<
Neutrinos are special in SM o <

Right-handed neutrino has NO >W5M<
Interactions! Neutral-Current ™ .-

g
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Why “Weak” ?

Weak interactions are weak because of the
massive W and Z bosons exchange

do o 1 g is 4-momentum carried by exchange particle
dg’ (q2 ~M 2)2 M is mass of exchange particle

1 ZEUS &p DIS
At HERA see W and Z S e NC Data
propagator effects — Sl ? (L Date
- Also weak ~ EM strength 8 e B
S0t ﬂ*_‘?_

Explains dimensions of Fermi “constant”

— 2 —4:

G _ 2 gW 10?
E — _I
8 MW 10 5‘

_1.166x10"°/GeV? (g,, ~0.7) e T e
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How Weak I1s Weak?

100 GeV Neutrinos incident on a target
c(ve) ~ 1049 and o(vp) ~ 10736 cm?
vsS. o(pp) ~ 10726 cm?

Mean free path in a steel absorber is 10 light
seconds

“l have done something very bad today by proposing a
particle that cannot be detected; it is something no
theorist should ever do.”

Wolfgang Paul
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Extreme Measures to Overcome
Weakness (Reines and Cowan, 1946)

Incident
antineutrino

\\/ Gamma rays
kY
X

Nuclear

explosive Gemmareys
. Neutron capture
Fireball
Buried signal line e
30 m for triggering release
40m | Ultimately realized at a nuclear
T reactor (Savannah River)
Back fill —~ ;’jfnuDum 1956: "We are happy to inform
you [Pauli] that we have
Suspended ] . . ”
detoctor Vacuum definitely detected neutrinos...
line . .
Vacuum —- 1995 Nobel Prize for Reines
tank Feathers and

foam rubber
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Neutrino-Electron Scattering

Z
Inverse u—decay: /
- B = =
R A T AV —
Total spin J=0

(Assuming massless

Qi
muon, helicity=chirality) 2 1
- o 9w,y
0 W
o
~ 4
Vi u My,
what is szax? GIES
Q*=—(e-v,) Otor = .
~-[ 287 (1-cosd) | omrame) | 975,10 2em? /GeV -E, (GeV)
<(2E:) =5
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Neutrino-Electron (cont’'d)

e
Gﬁs ¢ —

= Vu > <

7T %
=17.2x10"%cm*/GeV -E, (GeV)

Ve

Why is it proportional to
beam energy?
S = (pvﬂ + pe)2 = me2 +2m.E (e rest frame)
Proportionality to energy is a generic
feature of point-like scattering!
because do/dQ? is constant
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Neutrino-Electron (cont’'d)

Elastic scattering:
v,t€ —>v, +e
Coupling to left or right-
handed electron
Total spin, J=0,1

Electron-Z° coupling G2s (1
F

(LH, V-A): -1/2 + sin%0,, O € - Z—Siﬂ2 O, +Sin4‘9wj

G:s
7T

(RH, V+A): sin?6,, O oC

(sin* 6, )
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Neutrino-Electron (cont’'d)

What are relative
contributions of left and
right-handed scattering
from electron?

—> ‘—
v iy

= const

dcoséd
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Neutrino-Electron (cont’'d)

) . Gis(1 ., .
Electron-Z° coupling o o« —sIn“ g, +sin” 6,

(LH, V-A): -1/2 + sin20,, T \4
GZs (. ,
(RH, V+A): sin?0,, O T (Sm ot )
Let y denote inelasticity.
Recoil energy is related to (
CM scattering angle by do LH: jdy =1
y:Ezl—l(l—COSQ) ‘[dyd_y:<RH'I(l— )2d —}/

2
Oror = %(%—sinz a, +%Sin4 a, j =1.4x10"%cm*/GeV -E,(GeV)
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Concept Question #1
* The reaction v v

any an
v,te —>v, +e Yp
has a much smaller cross-section than z

e
Vo+€ — v, +e

What extra process present in the second makes
this so? (Naive answer)

Show that this increases the rate (precise answer)
(Recall from the previous pages...

do LH . LH|?
Crop = j dy — Oror o |total coupling
dy
For electron... | LH coupling RH coupling
J‘d d(TLH . dO_RH
= Weak NC -1/2+ sin?0 sin20
dy dy w w
Weak CC -1/2 0
LH |, 1 _RH
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Concept Question #1
* The reaction

v,+te > v, +e
has a much smaller cross-section than

Vo+€ — v, +e
Why is this? z

Nalve answer: Because there is both a

CC and NC reaction! ¢ ©
More precisely: We have to show the W
interference between the two is constructive.

The total RH coupling is unchanged because
there is no RH weak CC coupling

There are two LH couplings: NC coupling is -1/2+sin?0,, = -1/4 and the CC
coupling is -1/2. We add the associated amplitudes... and get -1+sin20,, = -3/4
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Lepton Mass Effects

Let’s return to
Inverse u—decay:
vV, +e > U+ Vv
What changes in the presence
of final state mass?

pure CC so always left-handed

BUT there must be finite Q2 to IVlw4
create muon in final state!
GZ (s—m})
Otor =
T
2
: : : (massless) m,u
see a suppression scaling with = |:O'TOT ] 1-—=
S

can be generalized...
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What about other targets’?vaniy)p
Z

Imagine now a proton target PP
Neutrino-proton elastic scattering: v, + p —> v, + p
“Inverse beta-decay”: Ve e’

V.+p—et+n y
and its close cousin: P
Ve TN € +P o
Inverse beta-decay (IBD)
was the Reines and

Neutron capture

Cowan discovery signal

Liquid scintillator
and cadmium
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Proton Structure

How is a proton different from an eIectron’P
anomalous magnetic moment, x = 9=< ;tl
“form factors” related to finite size

\ _ i ELE(;T'ROH ét:.ﬁ.'l'TElFilNG -
( . ] ‘.} I'G""' TARGET CHAMBER | - IG-“ \ FROM HYDROGEN — | Determlned
—ELECTRON BEAM ) | \ [lﬂﬂ MEY LAB)

R = &:_ , J. proton RMS
“BEAM COMVEROES FROM , /i =
mmﬁl .ﬂi-.!:lSTnl.l\:Ga-'. I:IZ a FE[T;; d,:’lll J— _I.'I/‘ \'\ Charge radlus

) TEST ARS0ORBER ———r \ '.I " lll
‘ \ N\ e/ NI e —— to be
\mﬂaﬂﬁfaﬂmﬁ RN / " 107® — POINT MOMENT_ (0 710 2)
\ \}‘\ y = A (ANOMALOUS) =4
\_ A E | CURVE - x10-13 cm
srcemoneren cnace s —2 7 EH*. T \ z uu‘i‘-i-“cunvl-:
.____ e l"-l" I'-.:".‘I '-,_II:.II.. "-_IIII E Iu‘!l e
%&?ﬁ%ﬁ.ﬁﬁéfm“m_ P & EXPERIMENTAL CURVE 1, TN
McAllister and Hofstadter 1956 g | __ o '\
188 MeV and 236 MeV electron beam o A
from linear accelerator at Stanford 3 s 70 90 W0 30 150

LABORATORY AMGLE OF SCATTERING (IN DEGREES)
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Final State Mass Effects

In IBD, v, + p — €* +n, have to pay a mass

penalty thce Ve e’
M,-M,~1.3 MeV, M,=0.5 MeV y
What is the threshold? P,

kKinematics are simple, at least to zeroth order in M_/M_
- heavy nucleon kinetic energy is zero

Sinitial = (p +p) = +2I\/I ,E, (proton rest frame)
Stinal = (Pe + P,)° ~M2+m +2|V| (EV (l\/ln I\/Ip))

. (M. 4+m. ) =M ?
Solving... Evm'”z( . ZIs/I) > ~1.806 MeV

P
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Final State Mass Effects (cont’d)

Define 6E as E -E ™", then
i = M5 +2M , (SE+E,™ )
2
=M +25ExM +(M +m,) —M’
:25E><I\/I|O+(Mn+me)2
Remember the suppression generally goes as
2
é:mass —1— mfinal2 —1— (Mn2+ me)
S (M, +m,)" +2M xJE
( 2M

OE x > low energy
2M | x OE (M, +m,)

— <
M. +m,) +2M_ xSE M +m) M

(M, +m,) P 1—( [ ze) " high energy
2M 2 SE
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Y e’

Putting It all together... Y

GZS W
Oror = ; X COS” Feapivno X(é:mass)x(gvz +39A2)

d

quark mixing! final state mass proton form
suppression factors (vector
and axial)

mass suppression is proportional to
oE at low E , so get quadratic near threshold

vector and axial-vector
form factors (for 1BD usually

referred to as f and g, respectively)

gy, ga =1, 1.26.

FFs, Oc.pipo, PESt KNOWN  © |
from t, 6 1 2

10

cim_ |

1o

= k2 = Sn o
— T T T T T 1
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Concept Question #2

 Which is closest to the minimum
beam energy in which the reaction

Vv, + € = I+ Vg

can be observed?

(a) 100 MeV (b) 1 GeV (c) 10 GeV

(It might help you to remember that Q.. =m
or you might just want to think about the total CM energy required

to produce the particles in the final state.)
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Concept Question #2

 Which is closest to the minimum
beam energy in which the reaction

V,+€ = U+ v,

can be observed?

(a) 100 MeV (b) 1 GeV {(c) 10 GeV]
QZ _ :mZ
min U
Q*<s=(p.+p,)
=(me+EV,O,O,\/EV2—mV2)2zm§+2meEV

2

m
. E, >—"-=10.9 GeV
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Summary and Outlook

We know ve- scattering and IBD cross-sections!
In point-like weak interactions, key features are:

Integrating gives o«E
enters w/ : w/
Integrating these gives 1 and 1/3, respectively
effect gives

Integrating gives correction factor in ¢ of (1-Q?
can add

Deep Inelastic Scattering Is also a point-like
limit where interaction is v-quark scattering
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Neutrino-Nucleon
Deep Inelastic Scattering
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Neutrino-Nucleon ‘n a Nutshell

Charged - Current: W* exchange Neutral - Current: Z° exchange

Quasi-elastic Scattering: Elastic Scattering:

(Target changes but no break up) (Target unchanged)

V,tN o> p +p v,+N—->v, +N

Nuclear Resonance Production: Nuclear Resonance Production:

(Target goes to excited state) (Target goes to excited state)

vp+rn—>u +p+nd (N orA) vi+N—=>v, +N+n (N ora)
n+m*

Deep-Inelastic Scattering: Deep-lInelastic Scattering

(Nucleon broken up) (Nucleon broken up)

v, +quark — p~ + quark’ v, +quark — v, +quark
GTOSE DIS6 /' «——— | inear rise with energy
secLion o

o
2]

P Su———

N } Resonance Production

1T
QE

i |
v Energy
12-13 June 2005 Kevin McFarland: Interactions of Neutrinos 46




Delphi Rooster

that would be the rooster

null

2.5600011

XXX - 
Delphi Rooster, Unedited

Recorded on Kevin's iRiver player


Scattering Variables

[ DEEP INELASTIC NEUTRINO SCATTERING

Scattering variables given in it
terms of invariants V (Ep) /
\

*More general than just deep \CWF (v.q)
inelastic (neutrino-quark) xP \ o
scattering, although O —=
interpretation may change. k

Measured quantftfezs: E, ,E, 8
4 - momentum Transfer’: Q° =-q° = —( p' - p) ~ (4EE' sin2(¢9/2))

Energy Transfer: v:(q-P)/MTz(E—E') =(E,-M;),
Lab

Inelasticity : yz(q-P)/(p-P)z(Eh—MT)/(Eh+E')

Lab

Fractional Momentum of Struck Quark: x=Q?/2M.v
Recoil Mass? :W? = (q+P)? =M, * +2M,v —Q?

., Q°
CMEnergy’: s=(p+P)’=M," +=—

12-13 June 2005 Kevin McFarland: Interactions of Neutrinos y
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Parton Interpretation of DIS

2 ,2p?2
Mass of target quark mq = X P

w v .
\ Mass of final state quark
m_“=(xP+q)

q

xP q=p —-p”

In “infinite momentum
T -0p frame”, x is momentum of

\" ~ partons inside the nucleon
m 2 2

_ Q0
Neutrino scatters off a 2P . q M TV

parton inside the nucleon
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So why Is cross-section so large?

(at least compared to ve- scattering!)
Recall that for neutrino beam and target at rest

2
Ges

T

2 Qr%ax =S
GF

hd =3 J’ dQ? =

T 0
2
S=m"+2mE,

Oror

But we just learned for DIS that effective mass of
each target quark is M, = XM cieon

So much larger target mass means larger oot
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Chirality, Charge in CC vq Scattering

y ———» +——— ¢
. Total Spin=0

Total spin determines v— +——7 [ worw
iInelasticity distribution

Flatiny
Familiar from neutrino- v —/——> <~—_—7 ol S 1
electron scattering e e e
e
vp 2
do” _G:s (xd(x)+xu(x)(1 y) ) Neutrino/Anti-neutrino CC
dxdy d each produce particular Aq
do”® Ggs, = ' '
(xd (x)+xu(x)(1 y)? ) In scattering
dXdy T

vd — 1 u

but what s this "q(x)"” W —> u'd

12-13 June 2005 Kevin McFarland: Interactions of Neutrinos 50



Factorization and Partons

Factorization Theorem of QCD allows amplitudes for
hadronic processes to be written as:

A(I+h—>|+X):ZjdxA(l+q(x)—>I+X)qh(x)

Parton distribution functions (PDFs) are universal
Processes well described by single parton interactions

Parton distribution functions not (yet) calculable from first
principles in QCD

“Scaling”: parton distributions are largely independent
of Q2 scale, and depend on fractional momentum, x.
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Momentum of Quarks & Antiquarks

Fractional
nucleon
momentum
carried by
quarks or
antiquarks

Momentum carried by quarks
much greater than anti-quarks
In nucleon
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Momentum of quark or antiquark

Momentum of nucleon
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y distribution in Neutrino CC DIS

y=0:
Quarks &
anti-quarks

Neutrino and
anti-neutrino
identical

12-13 June 2005

0.08

0.06

0.04

0.02

\.\-\—\-\-\.’:n_tineui

B neutrino

T T T N T O S S
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y = (1—cos®)/2

do(vg) _do(va)
dxdy dxdy

do(vQ) _ do(vq) o (1- y)z
dxdy dxdy

y=1:
" Neutrinos see
only quarks.

Anti-neutrinos
see only anti-
quarks

V V
o' x>0
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Concept Question #3

« Given: O e %GCCV in the DIS regime (CC)

do(vq) _do(vq) _,do(vg) ,do(vQ)
= —3— VA g7 VA
and dx dx dx dx
for CC scattering from quarks or anti-quarks of a

given momentum,

and that cross-section is proportional to parton
momentum, what is the approximate ratio of anti-
quark to quark momentum in the nucleon?

(a) q/q~1/3 { (b) q—/q~1/5] (c) g/q~1/8
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Concept Question #3

|4

. Given: O.c. =50 inthe DIS regime (CC)

and o(vq) =o(vq)=30(vq) =30(v0q)

(a) q/q~1/3 [ (b) q—/q~1/5] (c) g/q~1/8

el
jdx da(vq) da(vq)j J-d (da(vq) 3da(vq)j
dx dx
J-d (da(vq) da(vq)j Zj dx (da(vq)+3da(vq)j
dx 3dx dx
_Idxda(vq)ZSJdxda(vq):_jdxda(vq)
dx dx dx
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Momentum of Quarks & Antiquarks

Fractional 0.8
nucleon
momentum
carried by
quarks or
antiquarks

Momentum carried by quarks
much greater than anti-quarks
In nucleon

Rule of thumb: at Q2 of 10 GeV?=;

total quark momentum is 1/3,
total anti-quark is 1/15.
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Momentum of quark or antiquark

Momentum of nucleon
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Or... Structure Functions (SFs)

A model-independent picture of these interactions can
also be formed in terms of nucleon “structure functions”

All Lorentz-invariant terms included
Approximate zero lepton mass (small correction)

do*

o y22xFl(x,Q2)+(2—2y—MTXy
dxdy

jFZ (XiQZ) T y(2_ y)XF3(X’Q2):|

For massless free spin-1/2 partons, one simplification...
Callan-Gross relationship, 2xF=F,
Implies intermediate bosons are completely transverse

Can parameterize transverse
cross-section by R, .

o F AM 2x°
*Callan-Gross violations, M R =—t= > i: (14— T2
‘NLO pQCD, 9 —qq Ot X Q
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SFs to PDFs

Can relate SFs to PDFs in naive quark-parton model by
matching y dependence

Assuming Callan-Gross, massless targets and partons...
Fj: 2y-y? , 2xF,=F,: 2-2y+y?

2xF1“pCC=xd (X)+U, (X)+5,(X)+C, (x)

XF,'* :xd J()—u, (X)+5,(X)—cC (x)
In analogy with neutrino-electron scattering, CC only

iInvolves left-handed quarks
However, NC involves both chiralities (V-A and V+A)

Also couplings from EW Unification
And no selection by quark charge

2XF,PNC x[(uﬁ +U2) (U, (%) + U, (%) + 6, (X) +€, (x)) + (d +d§)(dp(x)+d_p(x)+sp(x)+§(x))}
X, P = x| (uf = u2) (U, (09 =, 00+ €, (0 =€, () + (dF = d2) (d, (9 = d, () +5, () =5, (%)) |
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Isoscalar Targets

Heavy nuclei are roughly neutron-proton isoscalar
Isospin symmetry implies U 0 — dn ,d 0 = U,
Structure Functions have a particularly simple
interpretation in quark-parton model for this case...

d2gv®N B G,ES

dxdy 27 B g B
FyONCC (%) = x(u(x) +d () + u(X) + d (X) + 5(X) + S(X) + ¢(X) + c(X) =

XFSV(;) N,CC (X) i

- XuVaI (X) + XdVaI (X)

12-13 June 2005

L1+ @-y)) R0 £(1- - y)°) xRy ()]

xq(x) +xq(x)

+2X(s(x) —c(x))

where u,,, (X) =u(x) —u(x)
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Neutrino-Nucleon
Deep Inelastic Scattering

BONUS Example!
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Example: NuTeV NC/CC Ratio

NuTeV experiment measures ratios of neutral to charged current
cross-sections on an isoscalar target to extract NC couplings

V 1] V V
Y \zé/

W-q coupling is /4

Llewellyn Smith Formulae

_ v(v) v(v)
vy O oX
RV = 5‘8) —((uerd )+ %) (u +d )j

CC

12-13 June 2005

e *

Z-q coupling is 1,-Qsin?6,,

Holds for isoscalar targets of u and d
quarks only
Heavy quarks, differences between u
and d distributions are corrections
Isospin symmetry causes PDFs to
drop out, even outside of naive
quark-parton model
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NuV atﬁﬁV\f/_prk .

[]
mil
[
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Event Lenath
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NuTeV Fit to Rvand R»w&

* NuTeV result;

sin® @\ = 0.2277 £ +£0.0013(stat.) + 0.0009(syst.)
=0.2277 £0.0016

(Previous neutrino measurements gave 0.2277 + 0.0036)

« Standard model fit (LEPEWWG): 0.2227 + 0.00037
A 3o discrepancy ...........

R’ =0.3916+0.0013 0.

exp

(SM :0.3950) <«= 3o difference
R =0.4050+0.0027

exp

(SM :0.4066) <= Good agreement

0.405 |

vbar
R exp

0.4 |

| L ! L | L |
0.388 0.39 0.3¢82 0.394 0.396
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Neutrino-Nucleon
Deep Inelastic Scattering

BONUS topics!
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Strong Interactions among Partons

Q? Scaling fails due to these interactions

q(x,Q%) _ as(Qz)jdy

N, dlogQ® 27 3y
@
9 X , X
P.|— , P.|—
.Sca:}‘\‘etsoﬁ |: QQ(y]q(y Q )+ qg(yj :|

Rl Q)
4

*Pqq(x/y) = probability of finding a quark with

\ - QCD scale vilationg momentum x within a quark with momentum y

A

ccal *Pqq(x/y) = probability of finding a g with
caﬂ“'?f momentum x within a gluon with momentum y

4 1+ 7°
P ——
qq(Z) ( )

o ~x Pu(2) =7 [ ( }
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Scaling from QCD

*\
L ”N\
A
10}— \ \+
B a
— \+ GGM v
[ ° \ (3 GeV)
Fa(x)
) \4\ ‘\
B R
SLAC ed
< (15 GeV)
i 4
b\
01 p—
__ COHS W
(100 GeV)
| | | I
0 025 05 0.75 10
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Observed quark
distributions vary 1.0
with Q2

-

1.0

Scaling well 05
modeled by ‘
perturbative QCD
with a single free

parameter (o)
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T T
0<x<0.03 .
1.0 ,)/H/ 003<x<0.06 J
M . .
0.06<x<0.1 —
:ﬁ M

Y ¥
1.0
B 4 - 0.1<x<0.2 §
1_01. NA—#—‘—‘—L&A-*_LL N

T ]lllI] T LI I LI
F,(x,0%)

»
Wo.kmo_a
+

. ]
4 A ~ $ oaexcos |
4 .
MWDL
44
+ + +o.s«=~<o.s
¢

+ +o‘e<:<0.7—
™

50 100 200

g2 (GeVic)?
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Lepton Mass Effects In DIS Reglon

0.01

Recall that final state mass effects 0.0
enter as 2correc:tlons. ,
m m 000 )
1 - IU % l _ lu .00z !
Spoint-like Xsnucleon o.005 "
relevant center-of-mass energy is

that of the “point-like” neutrino-
parton system 0.001

this is high energy approx. o b

For v_ charged-current, there is a B :
threshold o E
. 2 0.4 :— ._._i'.':Nl."n._..n'"H] —:
mln (mnucleon mz') 0.2 — m==- - = v, Mo (v, N) —
Where N 1 - "';U — ””“IIl.l:L — ””“III.I: l|';.l|"=:'l:3:‘-:'l|
Sinitial = mnucleon + 2Ev mnucleon (Kretzer and Reno)

E M. +2M, M eon <35 Gey | Thisis threshold for partons

- B, 2 om ~ with entire nucleon momentum
_ _ nucleon effects big at higher E_ also
anC|eon 'S MT elsewhere, Kevin McFarland: Interactions of Neutrinos 67

but don't want to confuse with m_....




Heavy Quark Production

Scattering from heavy quarks is more
complicated.

Charm is heavier than proton; hints that its

mass is not a negligible effect... S @)
(q + é,p)z = p*“= mc2 ®
q°+2¢peg+¢*M° =m’ Notyour father's fractional momentum
A2 2
Therefore = 4 M
2peq
‘e Q*+m.S° Q%*+m’
- 2Mv Q°/x
m. > “slow rescaling” leads to
¢ =X 1+— kinematic suppression of
Q charm production
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Neutrino Induced Dilepton Events

Neutrino induced charm production has been extensively studied
Emulsion/Bubble Chambers (low statistics, 10s of events)
“Dimuon events” (high statistics, 1000s of events)

d
vﬂ+( ]—>y+c+x
Cou +v,+ X'

Vi +£d} —>u +Cc+ X
S
b Rate depends on: CoOu +vu+ X
- d, s quark distributions
|Ved|
Kinematic suppression and fragmentation
Effects can be separated and measured
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NuTeV Dimuon Sample

Extract production suppression and separate measurement of
strange and anti-strange quark distributions

0.01

€= 90.2Gev 01 T E= 90.2cev , 4 -
0.006 I~ y= 0.334 Hox 001 i NuTeV S(X) b 5()(), C|=4G€V
G 0.0075 1 0.1 ¢
0.0075 0.1 gu ‘ w
0.004 oo0s F ‘ BGPAR hatched blue ;
C Tk 0005 | GRV dashed black
0002 = 0.0025 | 0.0025 : CTEQ doshed red e W
N o 0.08 B 0.08 = 5
R | | R ] ] 0 .
0  0.126 0.2519 0.3779 0 0126 02519 0.3779
[ E= 174.4Gev 0015 [ E= 174.4Gev 0015 [ E= 1744 Gev 0.06 0.06
00l y= 0.334 y= 0573 y=0.79
i 0.01 0.01
0.005 r E C 0.04 0.04
- 0.005 | 0005 |-
0 it | | 0 L ] ] 0 N ] |
0 0126 02519 0.3779 0 0126 02519 0.3779 0 0126 02519 03779 (3 (35 0.02
0015 [ E= 244.7Cev [ €= 2447 6ev 002 [ E= 244.7Gev o,
C 0.015 E y=0.79 O IR BTE] RN B ® %‘\‘:{ O
001 0015 0.110.2 03 0.4 o1 0.2 0.3 0.4
E 0.01 :_ 0.01 X X
0.005 :_ 0.005 - 0.005 ‘\\ .
E o S strange and anti-strange seas
0 bas 0 e 0 R

o

0.126 0.2519 0.3779 0 0.126 0.2519 0.3779 0 0.126 0.2519 0.3
\Differential cross-sections
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QCD at Work: Strange Asymmetry?

An entertaining aside...

The strange sea can be generated
perturbatively from g s+sbar. o

BUT, perturbative generation of

differences between s and sbar are
suppressed, so s & sbar difference probe 2
non-perturbative (“intrinsic”) strangeness ,

Models: Signal&Thomas, Brodsky&Ma, etc,, |
NuTeV has tested this

a

qlx)

s

O

NB: NOT independent of what is assumed ) - ]

about non-strange sea, so caution in -

applying this is warranted —4 o=
NuTeV measures: (Brodsky & Ma, s-sbar)

[ dx|x(s —s)|=-0.0027+0.0013
et [dix(s+s)|~0.02
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GeV Cross-Sections
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What'’s special about 1t?

Why do we care?

Cross
section

Remember this picture?

1-few GeV is exactly where
these additional processes

are turning on

DISc S

QE

L1 GeV is here Energy

It's not DIS yet! Final states & threshold effects matter

Why is it important? Examplg: T2K

12-13 June 2005

N .
Neutrino enerqy spectrum

- [cross-section x flux)

RC |

0D o5 1

1 2 268 3 35 4
GaVf

Goals:

1. v,—v,

2. v, disappearance
E, is 0.4-2.0 GeV
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How do cross-sections effect
oscillation analysis? = vutn=rtp .y

Vv H“ {:E'u! Pu}
v, disappearance p

at Super-K reconstruct these events by muon angle and
momentum (proton below Cerenkov threshold in H,O)

other final states with more particles below threshold
(“non-QE”) will disrupt this reconstruction

T2K must know these events at few % level to do
disappearance _No oscillation  Am?= 2.5 x103 eV2  Am2= 2.0 X103 eV?

: Sa00 L ~OA25deg ~ -
analysis to g ' % |
measure %“““ 5 w |
2 S200
Am?,3, B3 § | “i
§100 : 20 [
i s 0 i .;..*4...*..*..:1'...'.:'.'....-'

a 5 1 {1 B 1 156 2

i 1.5 2 o
. ec. Ev, \' rec. Ev (GeV)
(flg. cour{esy \P?El-fayato) (assuming sin? 26,,=1.0)
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How do cross-sections effect
oscillation analysis?

v, appearance

different problem: signal rate is very low so even rare

backgrounds contribute! =y
Votn—>e+p e signal .[u<
(P.. 0,) -
. [l n9 background !
p E. from E >peak
nos NC Single Fien Preduction | s MEC Singla Fan Preductian
Focae | DUTLARI I e s | - DTSRI GRS g
L l}.!;— 2
o | e the world’s data on this
f“f;: background
Nl (compiled by G. Zeller,
ot hep-ex/0312061)

n“;_, ; 1In Er(@-‘)
0
12-13 June 2005 ¥ u p— Yy Pz
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(Quasi-)Elastic Scattering

Elastic scattering leaves a single nucleon in the final state

CC “quasi-elastic” easier to observe m—1p
, TP vp—1'n
CC v, Quasi—Elastic Cross Section (=) a
n == = LIGHT TARGET OATA QNLY ===
E 2 | & BNL, Boker, Phys. Rev. D23, 2488 (1881}, O, v N >V N
% | T AML Borish, Pya. Rev. 016, 3103 (1977), 0, State of data is marginal
.':’_1.?5 - @ FMAL, Kitogaki, Phys. Rev. D28, 438 (1883), O, . .
7 b & CERN_WA25, Alosia, Nuck. Phys, B343, 285 (1990, Dj No free_ neutrons implies nuclear
g O F corrections
T1as | Low energy statistics poor
S : .
=R | l Cross-section is calculable
075 | T b | But depends on incalculable form-
1 t ; ; + factors
Q.5 . .
Theoretically and experimentally
0.78 L HUANGE (fram nucleon) ;
' constant at high energy
. KU (frme nuckeon)
o L e— '-":'—!'\‘J—E-'LJ{"H‘;"“FH'?DLH:JZ 1 GeV? is scale of Q2 limit
10 1 10 1

= FfAa_lf

12-13 June 2005 Kevin McFarland: Interactions of Neutrinos 76



Hmmm...

What was that last cryptic remark?

Theoretically and experimentally
constant at high energy

1 GeV? is scale of Q2 limit

Qmax

Otor & de
Inverse u—decay:

V,+tE€ = U+ v, ~

a maximum Q? independent of
beam energy = constant ;o
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m—1p

Elastic Scattering (cont’'d)  vp-in

) (-) (-)
How does nucleon structure impact vyN—>vN

elastic scattering?

C.H. Llewellyn Smith, Phys. Rep. 3C, 261 (1972)
10 q" § I 12 (q:z‘]-'

< ﬂ'ﬂlu-':ulﬂ'r > = ﬁ(;\d] ’“rﬁ_F { (Q’z ) + Wi -+ '}}A'ﬂF{(qjj H(.L\rj

Folg? 1 Fula?) — F4(0) o : S

vig) ~ 1=/ alg) = T = /1) dipole approximation
3

— Mp = 1.032 GeV parameters
< My = 0.84 GeV > determined from data
<3 Fa(q FAF( ) - FA(0) = —1.25 n.b.: we've seen F (0) and F 4(0)

() = =gt Fal0) y before in IBD discussion (g, and g,)

“Form factors” modify vanilla V-A prediction of point-like

scattering in Fermi theory
vector part can be checked in electron elastic scattering
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I 0 ) ) 0 S T W £ N O

Quasi-Elastic Signhature

Fine segmented Solid Plastic Scintillator
w/ wavelength shifting (WLS) fibers

7
1

jj{ i

/_75—1 e

14

Avf il
o )%

i

2

Rt e T e e P e P e ]

ILTI‘x.I.l\JIII[I.I[‘I‘I.IlII\I.I
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3m

A
3m T
lem
<>
A
Extruded plastic

scintillator bar

coated w/ T10, reflector paint
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Simulation of new K2K
“SciBar” detector

Il

proton is NOT
ultra-relativistic!

g e
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Low W, the Resonance Region

Intermediate to elastic and DIS regions is a
region of resonance production
Recall mass? of hadronic final state is given by
W?=M2+2M.v-Q%=MZ+2M v(1-x)
At low energy, nucleon-pion states are dominated by N*
and D resonances
Leads to cross-section dominated by discrete
W2 values
Low v, high X
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Resonance Region Data

Data here, again, is impressively imprecise

This will be a problem if details of cross-sections
are needed where resonance production is
dominant. Need differential distributions!

~1-2 GeV important for T2K (background), NOVA (signal)

CC Singly Plon Productlon

CC Single Pion Produation £2 Singim Flan Praduckion
‘g 2 E is0, Durk, Brum e, D15, 2020 CHPI B e = * CERH-L, Mlase, N, Py, B2, 255 (1), Oy T [ ——— e o
* AL, Flsciowiy, i, Ao, P 1181 §1HEEL He Oy B 1| M, Eorh, Py B [ H),. H, W, Eazf: _h‘-”:__u T-ml:l. L1,
% [ & I Kitogakd. Pys, Rev. O34 £304 1A Oy " * A Fodowies: FRm. M, DG, 1 1 1P Hs B b et ) i
M e b fo el e e b
T 1s :ﬁ:?ﬂﬂ“ﬂﬁ:mnﬁ E 0a ' = 1 [oam I Py C41, Y ), LP A
(-8 & L. Carnpball. Phyn. Rev. Lot 30 290 (1978], H,  awr i
4728 .: B oml
T Ll i by
. t t el
L = | =
. nl_l -
£ -
a8
oz | 0.2 | o= |
n.m—'ll A A LA R e I o . . | | . . i iemd e b iiana
B n E.-(Hc'l",' ! 1 ™ N E..I:Eﬂl'}l Ly 0
v,p—>u pr v,N— unz v.N— u pr
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How to measure resonance region
Cross-sections?

Need a high granularity detector (like SciBar) but
In a higher energy beam and with improved
containment of y, 7%, u

Muon Ranger (ME) Outer D'EIECID {DD} Veto

MINERVA at NuMI

“chewy center” (active target)
with a crunchy sheII of muon, hadron and EM absorbers
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What can MINER VA see?

With high granularity, can reconstruct a broad
variety of exclusive final states

Bt HHNH HH
H B A LD HH HHH
HHH
HHHHHAHHAN HEEERRHA A A A R H A FH I R H

0 0
V,poV,. P, T >y

recoil proton

i photon
.

o
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Even better... R

A Liquid Ar TPC ofiers IL '/ 5 <
near bubble chamber ' < ol
precision...

Hard to build!

e ——— -_—— - s " - L 3 - S

MonteCarlo Event (atmospheric Vo QE interaction) in an ideal LAr detector

i
i L | 2
B

(duringTiRsTallation)
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Quark-Hadron Duality

Bloom-Gilman Duality is the relationship between quark
and hadron descriptions of reactions. It reflects:

link between confinement and asymptotic freedom
transition from non-perturbative to perturbative QCD

o(e'e” — hadrons)

R : f T | L
G(e+e_ —> lLl+lLl_) —ed et LLETE T

parton model calculation:

2
. EM
R= NC Z . (Qq ) T O(O‘EM T 0‘3) but of course, final state is really sums
>35> over discrete hadronic systems
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Dual ity an d 1
W 2 -I— Q ~ 1 *S0z 003 ooorron 020 0.0

Low Q2 data

0.5 T T

F o SLAC

0.4
[ o JLab

0.3F

DIS-Style PDF prediction —1]

Governs transition

between resonance and

DIS region
Sums of discrete

resonances approaches

DIS cross-section
Observe in electron

scattering data; apply to

Vv cross-sections
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0_0: 1 1 1 1 1 Og)
0.1 0.2 0.3 0.4 0.5 0.6 0.7
x [Q®=0.85]

0.20T

1.0

107° |
5F

1073 L
5F

107° L ! ! | .
0.80 0.85 0.90 0.95 1.00

x [Q*=15]
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0.0010
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0.0001

0.

107%

1073 -~

1079 L

| | | | |
0.850 0.875 0.900 0.925 0.950 0.975 1.000

1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6
x [Q*=0.22]

\
SLAC resonance fit
(Keppel+Stuart) 1

. — — F2(LO:GRV94)
F2(LO+HT:GRV94)

1
0.4 06 0.8 1.0
x [Q*=1.4]
T
~ N °
~
~N
N
N N
N E
\
1 \+

70 0.75 0.80 0.85 090 0.95 1.00
2
x [Q*=9]
-
~
~
~ e
~ ®
AN
N
AN

x [Q*=25]
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Concept Question #4

A difficulty in relating cross-sections of electron
scattering (photon exchange) to charged-current
neutrino scattering (W* exchange) is that some
e-scatting reactions have imperfect v-scattering
analogues.

Write all possible v, CC reactions involving the
same target particle and isospin rotations of the

final state for each of the following...
(@) en—en / \
(b)ep—ep " @
(c)epoens’ @ ( j§ 7’
(d)en—>epr P @
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Concept Question #4

Write all possible v reactions involving the same
target particle and isospin rotations of the final
state for each of the following...

(b) e n—en
v.n—up
(b)e'p—ep
there are none!
(c)e p—oenx’
v,p o> u pr’
(d)en—>e pr
v.nN—u n7z
Vﬂ%ﬂpﬂ
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Cross-Sections on
Nucleons in a Nucleus
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Nuclear Effects in DIS

Well measured effects in charged-lepton DIS

Maybe the same for neutrino DIS; maybe not...
all precise neutrino data is on Ca or Fe targets!

Conjecture: these can be absorbed into effective
nucleon PDFs in a nucleus  aniishadowing

0.001 0.01 0.1 / 1
2 3 4567
11 L | T 1 11 T 11

shadowing \
10

I.I.

i Ferrm
:H10 motion

RV 09

Fo(X) | Fy(D)
)
(o)
I LI

=R I R N o NMC CaD

= e e SLACES7FeD
08K | .- B = SLACE139FelD Hos

F A E665 CaD v\s

- —— Parameterization .E\

= e Error in parameterization S
0.7:|-...| 1 IIIIIII 1 1 IIIIIII...-I 1 L1 1 1117 07 EMceffeCt

3 4567 3 4567 2 3 4567
0.001 0.01 0.1
X

12-13 June 2005 Kevin McFarland: Interactions of Neutrinos 90



Nuclear Effects in Elastic Scattering

Two effects
In a nucleus, target nucleon has some initial momentum which
modifies the observed scattering

Often handled in a “Fermi Gas” model of nucleons filling available
states up to some initial state Fermi momentum, k.

Outgoing nucleon can interact with the target

Usually treated as a simple binding energy
Also, Pauli blocking... states are already filled with identical nucleon

However other final states can contribute to “quasi-elastic” scattering
through absorption in the nucleus...

Theoretical uncertainties are large

At least at the 10% level

If precise knowledge is needed for target (e.g., water, liquid
argon, hydrocarbons), dedicated measurements will be needed

Most relevant for low energy experiments
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And what does the data look like?

First glimpses at quasi-elastic rich low Q? region
on C nuclei...

-
% L
@] 0.3 ® Data

- f :f ] Monte Carlo

4} Data Z

3 NC 2T

| CC miulti EO_Q_

. WM coherentn 2

mmm CCin

coaE

0 02040608 1 1.2 1:4 16 1I_8~ Larger than eXpeCted 0_' i L%:Eﬁﬂ%&mi-

Q2 GeV rolloveratlow @2z ' = 7 7 U
Q2 distribution for K2K SciBar detector Q2 distribution for MiniBooNE

Data are, not surprisingly, suggesting nuclear
effects are not well modeled
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Nuclear Effects in Resonance Region

model of
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Nuclear Effects in IBD
v, +tA, > e +A,

0500 MeV.
1/2°

A 4
0.233 MeV

There is a complicated nuclear ,,
physics phenomenology which
| don’t care to detail here a2t

Suffice it to say that the form A
factors are not as simple to calculate 0814 Mev

3/2*

AJ=0 (Fermi Trans.), — v
AJ==x1 (Gamow-Teller Trans.) “

71Ga

ot 40K*

Threshold energies are less trivial
sometimes multiple states 4,384 MoV

Also have corrections due to finite p
size of nucleus and oar ek Ty

. 0*
electron screening v
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Some Common IBD Nuclel

here are some nuclei historically important for
Solar neutrino experiments

Experiment | Nuclear Target Reaction Oop AEnud
[10*°cm?] [MeV]
(no det. Thres.)
GALLEX/GNO 7 71 _ 71 8.611 + 0.4%
Ga 0.2327
SAGE 33 v,.+ Ga—>e + Ge )
HOMESTAKE - 1.725
37Clyy v+ Cl—>e + Ar o 0.814
SNO _
°H, V,+'Hoe +p+p (GT) 1442
ICAR - . 148.58 (F
CARUS “Arg | v+ Ar—>e +°K 8.58 (F)
44.367 (GTo) 1505 +

41.567 (GTg)

table courtesy F. Cavana
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Concept Question #5
Two questions with (hint) related answers...

1. Remember that W4 is...
W? = I\/Ié +2|\/|PV—Q2

_ 2
=M?+2M,v(1-X) ~ } W2
the square of the invariant mass of the "
hadronic system. (v=E -E ; x is the parton fractional momentum)

It can be measured, as you see above with only leptonic
quantities (neutrino and muon 4-momentum).

In neutrino scattering on a scintillator target, you observe an
event with a recoiling proton and with W reconstructed from
the leptonic variables that is <M. Explain this event.

2. In the same scmtlllator target, you observe the
reaction...v,, “C — u pz + remant nucleus

Why is this puzzllng? Explain what happened.
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Concept Question #5

 Both phenomena occur because of nuclear effects!
1. M, >W?=M; +2M,v(1-x)
can only be true if x>1.
That means the fractional momentum
by the struck target parton is >1! This
can only happen for in a nucleon boosted

towards the collision in the CM frame by interactions within
the nucleus (“Fermi momentum)

v, T
2.v,“C—y pr~ + remant nucleusy
seems to be nonsense. ltis
forbidden to occur off of a proton or a n/;\ P
neutron target by charge conservation! 0
But remember...
 reinteraction of pions! nucleus
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Connections to Low Energy
and Ultra-High Energy
Cross-Sections
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What Is Different at New Energies?

At 1-few GeV, cross-

section makes a transition e
between DIS-like and g EHCT SN
resonant/elastic

O AML 12-fect [18] ]
Why? “Binding energy” of
target (nucleon) is ~1 GeV, | S SN
comparable to mean Q? e

What are other thresholds?

Binding energy of nucleus is >>(M,-M,)=1 MeV,
typically 1/10ths — 10s of MeV
Binding energies of atoms are <~Z?m_c?ay,,/2~10-10° eV

Binding energies of v, {*, quarks (into hypothetical
constituents that we haven'’t found yet) are > 10 TeV
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Example: SNO

Three reactions for

observing v from sun
(E, ~ few MeV

’H, 10 binding energies are 13.6e
e are “free”. oo«E,

!

v
Uross soetegre o

hI
I

Binding energy of deuteron is 2.2 MeV. e S ——

Energy threshold for NC of a few MeV. s

(Bahcall, Kuboeara,
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Example: Ultra-High Energies

At energies relevant for UHE Cosmic Ray
studies (e.g., lceCube, ANITA)

v-parton cross-section is dominated by high Q2,
since do/dQ@? is constant

at high Q?, scaling violations have made most of
nucleon momentum carried by sea quarks

see arise in o/ E, from growth of sea at low x

neutrino & anti-neutrino cross-sections nearly equal
Until Q°»M,,?, then propagator
term starts decreasing and
cross-section becomes constant

do 1

oC
qu (qZ_MZ)Z
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Example: Ultra-High Energies

Unless, of course, non-SM processes are

excited! E.g., structure of quark or leptons,
black holes from extra dimensions, etc.

Then nn ane knows what tn exnact

1OE

TTTT]
1

E Fodor et al.
s PLB 561 (2003)

0.1

0.01

o[mbj]

0.001

E
0.0001 -
le-05
E — QCD E
= -  EW instanton
1e-06 - QCD with saturation E|
- — black hole (M=1TeV, M™"=5TeV, n=4) | ]
le_7 1 1 IIIIIII 1 1 IIIIIII 1 1 11 1 11T 1 1 11 1 11T 1 1 11 1
Uo7 1e+08 1e+09 1le+10 le+11
E[GeV]
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Conclusions

12-13 June 2005 Kevin McFarland: Interactions of Neutrinos 103



What Should | Remember from This?

Understanding neutrino interactions is key to precision
measurements of neutrino oscillations at accelerators

Weak interactions couple to single chirality of fermions
Consequences for scattering on point-like particles

Neutrino scattering rate proportional to energy
Point-like target (electron, quark), below real boson exchange

Target (proton, nucleus) structure is a significant
complication to theoretical prediction of cross-section
Particularly problematic near inelastic thresholds

can learn things by analogy with DIS (duality) and electron
scattering, but improved neutrino cross-section measurements
are required by next generation oscillation experiments
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