Accelerator Physics and Neutrino Beams

I. Linear Theory of Perfect Machines

E. Keil
Capri, 14 to 17 June 2005

http://keil.home.cern.ch/keil/ MuMu/Doc/NuSchool05/talk1.pdf

Programme of First Lecture - Linear Theory of Perfect Machines

- Coordinate system and equilibrium orbit
- Linear equations of motion
- Stability of betatron oscillations
- Amplitude of betatron oscillations
- Phase space, admittance, emittance
- Dispersion

Coordinate System and Equilibrium Orbit

- Curvilinear system: Arcs of circle with radius ρ in dipoles, straight lines in all other elements
- Distance s along reference orbit
- Horizontal displacement x, vertical displacement y
- Displacement u may be either horizontal or vertical
- Reference orbit in median plane in all examples
- Reference orbit closes on itself

Linear Equations of Motion

- Get force from Lorentz equation, neglect all terms of order >1, and find equations of motion in horizontal coordinate x and vertical coordinate y

$$
\begin{gathered}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} s^{2}}+\left[\rho^{-2}(s)-K(s)\right] x=\frac{1}{\rho(s)} \frac{\Delta p}{p} \\
\frac{\mathrm{~d}^{2} y}{\mathrm{~d} s^{2}}+K(s) y=0
\end{gathered}
$$

with radius of curvature $\rho(s)$, momentum error of particle $\frac{\Delta p}{p}$, and focusing strength

$$
K(s)=-\frac{1}{B \rho} \frac{\partial B_{y}}{\partial x}
$$

- Magnetic rigidity $B \rho=p / e$ is a constant of the motion in purely magnetic field
- Linear coupling terms which link the two equations omitted

Stability of Beatron Motion I

- Particles launched with small offsets x and y and small angles x^{\prime} and y^{\prime} with respect to reference orbit execute betatron oscillations
- Use $\frac{\Delta p}{p}=0$, and find that both equations of motion have the same form

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} s^{2}}+K(s) u=0
$$

where the meaning of $K(s)$ depends on the plane under consideration, and the coordinate u may be either x or y

- The focusing strength $K(s)$ is periodic with the circumference C
- Solution of any second-order differential equation can be written as

$$
\begin{aligned}
u(s) & =C\left(s, S_{0}\right) u\left(s_{0}\right)+S\left(s, s_{0}\right) u^{\prime}\left(s_{0}\right) \\
u^{\prime}(s) & =C^{\prime}\left(s, S_{0}\right) u\left(s_{0}\right)+S^{\prime}\left(s, s_{0}\right) u^{\prime}\left(s_{0}\right)
\end{aligned}
$$

- Cos-like function C and sin-like function S depend on s_{0} and s, normalised such that $C\left(s_{0}, s_{0}\right)=S^{\prime}\left(s_{0}, s_{0}\right)=1$ and $C^{\prime}\left(s_{0}, s_{0}\right)=S\left(s_{0}, s_{0}\right)=0$, where prime ${ }^{\prime}$ denotes $\mathrm{d} / \mathrm{d} s$

Stability of Beatron Motion II

- Write equations for $u(s)$ and $u^{\prime}(s)$ with matrix $M\left(s \mid s_{0}\right)$

$$
\binom{u(s)}{u^{\prime}(s)}=M\left(s \mid s_{0}\right)\binom{u\left(s_{0}\right)}{u^{\prime}\left(s_{0}\right)}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{u\left(s_{0}\right)}{u^{\prime}\left(s_{0}\right)}
$$

- Properties of machine lattice in M and initial conditions nicely separated
- Determinant of M is Wronskian W of C and S and a constant of the motion, its value is $W=1$ by normalisation
- Successive application for positions $s_{1}, s_{2}, \ldots, s_{i}$ shows that $u\left(s_{i}\right)$ and $u^{\prime}\left(s_{i}\right)$ are related to $u\left(s_{0}\right)$ and $u^{\prime}\left(s_{0}\right)$ by a product of matrices M
- For $K(s)$ constant for $s_{0} \leq s \leq s_{1}$, matrix M becomes explicitly

$$
M\left(s_{1} \mid s_{0}\right)=\left(\begin{array}{cc}
\cos \varphi & K^{-1 / 2} \sin \varphi \\
-K^{1 / 2} \sin \varphi & \cos \varphi
\end{array}\right)
$$

with $\varphi=K^{1 / 2}\left(s_{1}-s_{0}\right)$

Stability of Betatron Motion III

- For $K(s)<0$ a more convenient form of M with $\varphi=(-K)^{1 / 2}\left(s_{1}-s_{0}\right)$ is

$$
M\left(s_{1} \mid s_{0}\right)=\left(\begin{array}{cc}
\cosh \varphi & (-K)^{-1 / 2} \sinh \varphi \\
(-K)^{1 / 2} \sinh \varphi & \cosh \varphi
\end{array}\right)
$$

- Sufficient condition for stability of betatron oscillations: C and S are bounded for all s
- Study matrix $M=M\left(s_{0}+L \mid s_{0}\right)$ for a full period of length L
- Any (2×2) matrix with unity determinant can be written as follows

$$
M=\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right)
$$

where α, β and $\gamma=\left(1+\alpha^{2}\right) / \beta$ are formal parameters for the time being, whose physical significance will become apparent later on

Stability of Betatron Motion IV

- By induction, it can be shown that M^{k} becomes

$$
M^{k}=\left(\begin{array}{cc}
\cos k \mu+\alpha \sin k \mu & \beta \sin k \mu \\
-\gamma \sin k \mu & \cos k \mu-\alpha \sin k \mu
\end{array}\right)
$$

- Elements of M^{k} are bounded for all k, and betatron oscillations are stable, if μ is real, and the trace of M satisfies $|\operatorname{Tr}(M)| \leq 2$
- Phase angle μ related to the eigenvalues of M by $\lambda=\exp (\pm i \mu)$
- For real μ, the λ are a complex conjugate pair on the unit circle
- For imaginary μ, the λ are a reciprocal pair on the real axis

Amplitude of Betatron Oscillations I

- Floquet's theorem states that the equation of motion with periodic K has always two particular solutions of the form

$$
\begin{aligned}
& u_{1}(s)=p_{1}(s) \exp (+i \mu s / L) \\
& u_{2}(s)=p_{2}(s) \exp (-i \mu s / L)
\end{aligned}
$$

with functions p_{1} and p_{2} periodic with period L

- It follows that $u_{i}(s+L)=u_{i}(s) \exp (\pm i \mu)$
- On the other hand

$$
u_{i}(s+L)=u_{i}(s)(\cos \mu+\alpha \sin \mu)+u_{i}^{\prime}(s) \beta \sin \mu
$$

- Hence u_{i} must satisfy the first-order differential equation

$$
u_{i} \alpha+u_{i}^{\prime} \beta= \pm i u_{i}
$$

- Obtain by differentiation

$$
\frac{u_{i}^{\prime \prime}}{u_{i}^{\prime}}-\frac{u_{i}^{\prime}}{u_{i}}=-\frac{\alpha^{\prime}}{ \pm i-\alpha}-\frac{\beta^{\prime}}{\beta}
$$

Amplitude of Betatron Oscillations II

- Second equation for the same quantities follows from equation of motion

$$
\frac{u_{i}^{\prime \prime}}{u_{i}^{\prime}}-\frac{u_{i}^{\prime}}{u_{i}}=-\frac{K \beta}{ \pm i-\alpha}-\frac{ \pm i-\alpha}{\beta}
$$

- Equating the r.h.s. of the two equations and ordering terms yields

$$
\left(\alpha^{2}+K \beta^{2}+\alpha \beta^{\prime}-\alpha^{\prime} \beta-1\right) \pm i\left(2 \alpha+\beta^{\prime}\right)=0
$$

- When the stability criterion is satisfied, all terms inside brackets are real, and real and imaginary part must satisfy the relations

$$
\beta^{\prime}=-2 \alpha \quad \alpha^{\prime}=K \beta-\gamma
$$

- Using $\beta^{\prime}=-2 \alpha$ in the equation for u_{i}^{\prime} / u_{i} yields

$$
u_{i}^{\prime} / u_{i}=\left(\pm i+\beta^{\prime} / 2\right) / \beta
$$

- Integrating this equation yields the solution

$$
u_{i}(s)=a \beta^{1 / 2} \exp (\pm i \mu(s))
$$

where a is dtermined by the initial conditions and $\mu(s)=\int \mathrm{d} s / \beta(s)$

Amplitude of Betatron Oscillations III

- Betatron oscillations behave like quasi-harmonic oscillators with an instantaneous amplitude proportional to $\sqrt{\beta}$ and an instantaneous wavelength $\lambda=2 \pi \beta$
- $\mu(s)$ is generalisation of $\cos \mu=\operatorname{Tr}(M) / 2$ which defines μ only modulo 2π.
- Integrating it over the whole cicumference C yields the number of betatron oscillations in a turn, i.e. the tune Q

$$
Q=\frac{1}{2 \pi} \int_{s}^{s+L} \frac{\mathrm{~d} s}{\beta}
$$

- Average value of β is $\bar{\beta}=R / Q$
- Formal quantities β and α now have pysical meanings, β is the reduced instantaneous betatron wavelength, $\alpha=-\beta^{\prime} / 2$

Phase Space Invariant

- Two-dimensional space $\left(u, p_{u}\right)$ with coordinates u and p_{u} is called phase space, where p_{u} is the momentum canonically conjugate to u.
- For constant particle momentum p_{u} differs from u^{\prime} only by a constant factor
- Continue working in $\left(u, u^{\prime}\right)$-space and still call it phase space
- $\left(u, u^{\prime}\right)$ satisfy the Courant and Snyder invariant

$$
E=\pi \frac{u^{2}+\left(\alpha u+\beta u^{\prime}\right)^{2}}{\beta}
$$

where u, u^{\prime}, α and β are all taken at the same s

- Proof by substitution
- Proof with Wronskian $W=u u_{1}^{\prime}-u^{\prime} u_{1}$ between $\left(u, u^{\prime}\right)$ and a particular solution u_{1}, using $u_{1}^{\prime}=(i-\beta) u_{1}$

$$
W=u_{1}\left(\frac{i-\alpha}{\beta} u-u^{\prime}\right)
$$

- Multiplying by the complex conjugate of W and rearranging terms yields the invariant, an ellipse in phase space with parameters related to α, β and γ

Physical Meaning of Ellipse Parameters

- Consider normalised Gaussian density distribution $d\left(u, u^{\prime}\right)$ with ellipse in argument of exponential
$d=\frac{\exp \left(-\frac{u^{2}+\left(\alpha u+\beta u^{\prime}\right)^{2}}{2 \beta E}\right)}{2 \pi E}$
- RMS radius $\sigma_{u}^{2}=\beta E$
- RMS divergence $\sigma_{u}^{\prime 2}=\gamma E$
- Deduce emittance $E=$ σ_{u}^{2} / β from RMS radius σ_{u}^{2} and β
- Upright ellipses with $\alpha=0$ are much simpler

Emittance - Acceptance

- Most common definition of emittance E is the area of the ellipse in phase space enclosed by the RMS radius σ_{u} and RMS divergence σ_{u}^{\prime}
- Customary to write e.g. $E=10 \pi \mathrm{~mm}$ mrad, and not to include the factor π in the number, making it clear that the number is the product of the semi-axes
- Emittance definitions with 2 or $2.5 \sigma_{u}$ also used, often in proton machines
- Width of ellipse in u-direction limited by aperture
- Maximum value of E is called acceptance or admittance
- Only particles with trajectories inside acceptance circulate indefinitely
- Emittance is beam property, acceptance is machine property
- Interest in injecting beam with ellipse shape similar to acceptance ellipse
- Adapting emittance to acceptance is called matching, cf. examples in later lecture
- Not to match results in emittance increase, due to processes outside scope of lectures, essentially tune dependence on betatron amplitude and momentum error

Normalised Phase Space

- Often convenient to work in normalised phase space with coordinates $\left(v, v^{\prime}\right)$ in which the Courant and Snyder invariant is a circle
- Transformation from $\left(u, u^{\prime}\right)$-space to $\left(v, v^{\prime}\right)$-space achieved by the transformation

$$
\binom{v}{v^{\prime}}=\left(\begin{array}{cc}
\beta^{-1 / 2} & 0 \\
\alpha \beta^{1 / 2} & \beta^{1 / 2}
\end{array}\right)\binom{u}{u^{\prime}}
$$

where $v^{\prime}=\mathrm{d} v / \mathrm{d} \phi$

- The new independent variable $\phi=\int \mathrm{d} s / Q / \beta=\mu / Q$ changes from 0 to 2π around the machine, but it is not the azimuthal angle
- In normalised $\left(v, v^{\prime}\right)$-space the transformation through an element with phase advance μ is represented by counter-clockwise rotation by angle μ
- Applying the transformation to the horizontal equation of motion yields that of a driven harmonic oscillator

$$
\frac{\mathrm{d}^{2} v}{\mathrm{~d} \phi^{2}}+Q^{2} v=\frac{Q^{2} \beta^{3 / 2}}{\rho} \frac{\Delta p}{p}
$$

Dispersion I

- Include r.h.s. in horizontal equation of motion and solve it for $\Delta p / p \neq 0$ and piecewise constant $K(s)>0$ and $\rho(s)$

$$
M\left(s \mid s_{0}\right)=\left(\begin{array}{ccc}
\cos \varphi & K_{x}^{-1 / 2} \sin \varphi & \frac{1-\cos \varphi}{\rho K_{x}} \\
-K_{x}^{1 / 2} \sin \varphi & \cos \varphi & \frac{\sin \varphi}{\rho K_{x}^{1 / 2}} \\
0 & 0 & 1
\end{array}\right)
$$

with $\varphi=K_{x}^{1 / 2}\left(s-s_{0}\right)$ and $K_{x}=\rho^{-2}-K$

- More convenient form for $K_{x}<0$

$$
M\left(s \mid s_{0}\right)=\left(\begin{array}{ccc}
\cosh \psi & \left(-K_{x}\right)^{-1 / 2} \sin \psi & \frac{\cosh \psi-1}{\rho\left(-K_{x}\right)} \\
\left(-K_{x}\right)^{1 / 2} \sinh \psi & \cosh \psi & \frac{\sinh \psi}{\rho\left(-K_{x}\right)^{1 / 2}} \\
0 & 0 & 1
\end{array}\right)
$$

with $\psi=\left(-K_{x}\right)^{1 / 2}\left(s-s_{0}\right)$

- As for betatron oscillations, the matrix for a string of elements is the product of the element matrices

Dispersion II

- Let matrix for a period of lattice be

$$
M\left(s_{0}+L \mid s_{0}\right)=\left(\begin{array}{ccc}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
0 & 0 & 1
\end{array}\right)
$$

- Dispersion $D\left(s_{0}\right)$ and its derivative $D^{\prime}\left(s_{0}\right)$ defined as periodic solutions of equation of motion with period L and $\Delta p / p=1$, and obtained by solving

$$
\left(\begin{array}{c}
D\left(s_{0}\right) \\
D^{\prime}\left(s_{0}\right) \\
1
\end{array}\right)=M\left(s_{0}+L \mid s_{0}\right)\left(\begin{array}{c}
D\left(s_{0}\right) \\
D^{\prime}\left(s_{0}\right) \\
1
\end{array}\right)
$$

- Integral representation of $D(s)$, obtained by solving normalised equation of motion and transforming it back into $\left(x, x^{\prime}\right)$-space, is often used in further calculations

$$
D(s)=\frac{\beta^{1 / 2}(s)}{2 \sin \pi Q} \int_{s}^{s+C} \frac{\beta^{1 / 2}(\sigma)[\cos \mu(\sigma)-\cos \mu(s)-\pi Q] \mathrm{d} \sigma}{\rho(\sigma)}
$$

Parameters in Longitudinal Dynamics

- Approximate value of the average dispersion \bar{D}

$$
\bar{D} \approx R / Q^{2}
$$

- Important quantities in longitudinal dynamics
- Momentum compaction $\alpha_{c}=(\Delta C / C) /(\Delta p / p) \approx 1 / Q^{2}$ with circumference C
- Slip factor $\eta=(\Delta T / T) /(\Delta p / p)=\beta_{r}^{2}(\Delta T / T) /(\Delta E / E)=\alpha_{c}-1 / \gamma_{r}^{2}$ with transit time T, and β_{r}, γ_{r} for reference particle
- Transition energy with $\eta=0$ where relativistic factor of reference particle equal to $\gamma_{t} \approx Q$
- Replacing $\left(x, x^{\prime}\right)$ by $\left(D, D^{\prime}\right)$ in Courant-Snyder invariant yields

$$
\mathcal{H}=\frac{D^{2}+\left(\alpha D+\beta D^{\prime}\right)^{2}}{\beta}
$$

- \mathcal{H} is a pseudo-invariant that changes only in bending magnets
- \mathcal{H} determines the equilibrium beam size in machines with quantum excitation and synchrotron radiation damping

Conclusions I

- Assembled basic tools for studying lattices to lowest order in linear approximation
- Effect of beam line element described by matrices obeying the rules of matrix algebra
- Standard form of matrices for repeat length with parameters α, β, γ and μ, all with physical interpretation
- Derived parameters to be used in longitudinal dynamics
- Left detailed derivations to tutorials
- Obvious extensions:
- Errors in alignment, excitation, and field shape \Rightarrow distortion of closed orbit, beating of β-functions, (x, y)-coupling
- Chromatic effects due to $\Delta p / p \neq 0$
- Extension to 6×6 matrices in linear approximation and 6D maps including terms of higher than first order
- Non-linear resonances
- Dynamic aperture

