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Programme of First Lecture – Linear Theory of Perfect Machines

• Coordinate system and equilibrium orbit

• Linear equations of motion

• Stability of betatron oscillations

• Amplitude of betatron oscillations

• Phase space, admittance, emittance

• Dispersion
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Coordinate System and Equilibrium Orbit
• Curvilinear system: Arcs of

circle with radius ρ in dipoles,

straight lines in all other ele-

ments

• Distance s along reference or-

bit

• Horizontal displacement x,

vertical displacement y

• Displacement umay be either

horizontal or vertical

• Reference orbit in median

plane in all examples

• Reference orbit closes on it-

self
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Linear Equations of Motion
• Get force from Lorentz equation, neglect all terms

of order > 1, and find equations of motion in hori-

zontal coordinate x and vertical coordinate y

d2x

ds2
+
[

ρ−2(s) −K(s)
]

x =
1

ρ(s)

∆p

p

d2y

ds2
+K(s)y = 0

with radius of curvature ρ(s), momentum error of

particle ∆p
p

, and focusing strength

K(s) = −
1

Bρ

∂By

∂x

• Magnetic rigidity Bρ = p/e is a constant of the

motion in purely magnetic field

• Linear coupling terms which link the two equations

omitted
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Stability of Beatron Motion I

• Particles launched with small offsets x and y and small angles x′ and y′ with
respect to reference orbit execute betatron oscillations

• Use ∆p
p

= 0, and find that both equations of motion have the same form

d2u

ds2
+K(s)u = 0

where the meaning of K(s) depends on the plane under consideration, and the
coordinate u may be either x or y

• The focusing strength K(s) is periodic with the circumference C

• Solution of any second-order differential equation can be written as

u(s) = C(s, S0)u(s0) + S(s, s0)u
′(s0)

u′(s) = C′(s, S0)u(s0) + S′(s, s0)u
′(s0)

• Cos-like function C and sin-like function S depend on s0 and s, normalised such
that C(s0, s0) = S′(s0, s0) = 1 and C′(s0, s0) = S(s0, s0) = 0, where prime
′ denotes d/ds
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Stability of Beatron Motion II

• Write equations for u(s) and u′(s) with matrix M(s|s0)
(

u(s)

u′(s)

)

= M(s|s0)

(

u(s0)

u′(s0)

)

=

(

C S

C′ S′

)(

u(s0)

u′(s0)

)

• Properties of machine lattice in M and initial conditions nicely separated

• Determinant of M is Wronskian W of C and S and a constant of the motion, its

value is W = 1 by normalisation

• Successive application for positions s1, s2, . . . , si shows that u(si) and u′(si) are

related to u(s0) and u′(s0) by a product of matrices M

• For K(s) constant for s0 ≤ s ≤ s1, matrix M becomes explicitly

M(s1|s0) =

(

cosϕ K−1/2 sinϕ

−K1/2 sinϕ cosϕ

)

with ϕ = K1/2(s1 − s0)
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Stability of Betatron Motion III

• For K(s) < 0 a more convenient form of M with ϕ = (−K)1/2(s1 − s0) is

M(s1|s0) =

(

coshϕ (−K)−1/2 sinhϕ

(−K)1/2 sinhϕ coshϕ

)

• Sufficient condition for stability of betatron oscillations: C and S are bounded for

all s

• Study matrix M = M(s0 + L|s0) for a full period of length L

• Any (2 × 2) matrix with unity determinant can be written as follows

M =

(

cosµ+ α sinµ β sinµ

−γ sinµ cosµ− α sinµ

)

where α, β and γ = (1 + α2)/β are formal parameters for the time being, whose

physical significance will become apparent later on
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Stability of Betatron Motion IV

• By induction, it can be shown that Mk becomes

Mk =

(

cos kµ+ α sin kµ β sin kµ

−γ sin kµ cos kµ− α sin kµ

)

• Elements of Mk are bounded for all k, and betatron oscillations are stable, if µ is

real, and the trace of M satisfies |Tr(M)| ≤ 2

• Phase angle µ related to the eigenvalues of M by λ = exp(±iµ)

• For real µ, the λ are a complex conjugate pair on the unit circle

• For imaginary µ, the λ are a reciprocal pair on the real axis
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Amplitude of Betatron Oscillations I

• Floquet’s theorem states that the equation of motion with periodic K has always
two particular solutions of the form

u1(s) = p1(s) exp(+iµs/L)

u2(s) = p2(s) exp(−iµs/L)

with functions p1 and p2 periodic with period L

• It follows that ui(s+ L) = ui(s) exp(±iµ)

• On the other hand

ui(s+ L) = ui(s)(cosµ+ α sinµ) + u′i(s)β sinµ

• Hence ui must satisfy the first-order differential equation

uiα+ u′iβ = ±iui

• Obtain by differentiation

ui”

u′i
−
u′i
ui

= −
α′

±i− α
−
β′

β
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Amplitude of Betatron Oscillations II

• Second equation for the same quantities follows from equation of motion

ui”

u′i
−
u′i
ui

= −
Kβ

±i− α
−

±i− α

β

• Equating the r.h.s. of the two equations and ordering terms yields

(α2 +Kβ2 + αβ′ − α′β − 1) ± i(2α+ β′) = 0

• When the stability criterion is satisfied, all terms inside brackets are real, and real
and imaginary part must satisfy the relations

β′ = −2α α′ = Kβ − γ

• Using β′ = −2α in the equation for u′i/ui yields

u′i/ui = (±i+ β′/2)/β

• Integrating this equation yields the solution

ui(s) = aβ1/2 exp(±iµ(s))

where a is dtermined by the initial conditions and µ(s) =
∫

ds/β(s)
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Amplitude of Betatron Oscillations III

• Betatron oscillations behave like quasi-harmonic oscillators with an instantaneous

amplitude proportional to
√

β and an instantaneous wavelength λ = 2πβ

• µ(s) is generalisation of cosµ = Tr(M)/2 which defines µ only modulo 2π.

• Integrating it over the whole cicumference C yields the number of betatron

oscillations in a turn, i.e. the tune Q

Q =
1

2π

∫ s+L

s

ds

β

• Average value of β is β̄ = R/Q

• Formal quantities β and α now have pysical meanings, β is the reduced

instantaneous betatron wavelength, α = −β′/2
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Phase Space Invariant

• Two-dimensional space (u, pu) with coordinates u and pu is called phase space,
where pu is the momentum canonically conjugate to u.

• For constant particle momentum pu differs from u′ only by a constant factor

• Continue working in (u, u′)-space and still call it phase space

• (u, u′) satisfy the Courant and Snyder invariant

E = π
u2 + (αu+ βu′)2

β

where u, u′, α and β are all taken at the same s

• Proof by substitution

• Proof with Wronskian W = uu′1 − u′u1 between (u, u′) and a particular solution
u1, using u′1 = (i− β)u1

W = u1

(

i− α

β
u− u′

)

• Multiplying by the complex conjugate of W and rearranging terms yields the
invariant, an ellipse in phase space with parameters related to α, β and γ
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Physical Meaning of Ellipse Parameters

• Consider normalised Gaus-

sian density distribution

d(u, u′) with ellipse in

argument of exponential

d =
exp(−

u2+(αu+βu′)2

2βE
)

2πE

• RMS radius σ2
u = βE

• RMS divergence σ′2
u = γE

• Deduce emittance E =

σ2
u/β from RMS radius σ2

u

and β

• Upright ellipses with α = 0

are much simpler
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Emittance – Acceptance

• Most common definition of emittance E is the area of the ellipse in phase space
enclosed by the RMS radius σu and RMS divergence σ′

u

• Customary to write e.g. E = 10π mm mrad, and not to include the factor π in the
number, making it clear that the number is the product of the semi-axes

• Emittance definitions with 2 or 2.5 σu also used, often in proton machines

• Width of ellipse in u-direction limited by aperture

• Maximum value of E is called acceptance or admittance

• Only particles with trajectories inside acceptance circulate indefinitely

• Emittance is beam property, acceptance is machine property

• Interest in injecting beam with ellipse shape similar to acceptance ellipse

– Adapting emittance to acceptance is called matching, cf. examples in later
lecture

– Not to match results in emittance increase, due to processes outside scope of
lectures, essentially tune dependence on betatron amplitude and momentum
error

E. Keil page 14



NuFact05 Summer School June 12, 2005

Normalised Phase Space

• Often convenient to work in normalised phase space with coordinates (v, v ′) in
which the Courant and Snyder invariant is a circle

• Transformation from (u, u′)-space to (v, v′)-space achieved by the transformation
(

v

v′

)

=

(

β−1/2 0

αβ1/2 β1/2

)(

u

u′

)

where v′ = dv/dφ

• The new independent variable φ =
∫

ds/Q/β = µ/Q changes from 0 to 2π

around the machine, but it is not the azimuthal angle

• In normalised (v, v′)-space the transformation through an element with phase
advance µ is represented by counter-clockwise rotation by angle µ

• Applying the transformation to the horizontal equation of motion yields that of a
driven harmonic oscillator

d2v

dφ2
+Q2v =

Q2β3/2

ρ

∆p

p
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Dispersion I

• Include r.h.s. in horizontal equation of motion and solve it for ∆p/p 6= 0 and
piecewise constant K(s) > 0 and ρ(s)

M(s|s0) =







cosϕ K
−1/2
x sinϕ 1−cosϕ

ρKx

−K
1/2
x sinϕ cosϕ sinϕ

ρK
1/2

x

0 0 1







with ϕ = K
1/2
x (s− s0) and Kx = ρ−2 −K

• More convenient form for Kx < 0

M(s|s0) =







coshψ (−Kx)−1/2 sinψ coshψ−1
ρ(−Kx)

(−Kx)1/2 sinhψ coshψ sinhψ

ρ(−Kx)1/2

0 0 1







with ψ = (−Kx)1/2(s− s0)

• As for betatron oscillations, the matrix for a string of elements is the product of the
element matrices
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Dispersion II

• Let matrix for a period of lattice be

M(s0 + L|s0) =







m11 m12 m13

m21 m22 m23

0 0 1







• Dispersion D(s0) and its derivative D′(s0) defined as periodic solutions of
equation of motion with period L and ∆p/p = 1, and obtained by solving







D(s0)

D′(s0)

1







= M(s0 + L|s0)







D(s0)

D′(s0)

1







• Integral representation ofD(s), obtained by solving normalised equation of motion
and transforming it back into (x, x′)-space, is often used in further calculations

D(s) =
β1/2(s)

2 sinπQ

∫ s+C

s

β1/2(σ)[cosµ(σ) − cosµ(s) − πQ]dσ

ρ(σ)
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Parameters in Longitudinal Dynamics

• Approximate value of the average dispersion D̄

D̄ ≈ R/Q2

• Important quantities in longitudinal dynamics

– Momentum compaction αc = (∆C/C)/(∆p/p) ≈ 1/Q2 with circumference
C

– Slip factor η = (∆T/T )/(∆p/p) = β2
r (∆T/T )/(∆E/E) = αc − 1/γ2

r

with transit time T , and βr , γr for reference particle

– Transition energy with η = 0 where relativistic factor of reference particle
equal to γt ≈ Q

• Replacing (x, x′) by (D,D′) in Courant-Snyder invariant yields

H =
D2 + (αD + βD′)2

β

• H is a pseudo-invariant that changes only in bending magnets

• H determines the equilibrium beam size in machines with quantum excitation and
synchrotron radiation damping
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Conclusions I

• Assembled basic tools for studying lattices to lowest order in linear approximation

• Effect of beam line element described by matrices obeying the rules of matrix
algebra

• Standard form of matrices for repeat length with parameters α, β, γ and µ, all with
physical interpretation

• Derived parameters to be used in longitudinal dynamics

• Left detailed derivations to tutorials

• Obvious extensions:

– Errors in alignment, excitation, and field shape ⇒ distortion of closed orbit,
beating of β-functions, (x, y)-coupling

– Chromatic effects due to ∆p/p 6= 0

– Extension to 6 × 6 matrices in linear approximation and 6D maps including
terms of higher than first order

– Non-linear resonances

– Dynamic aperture
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