Accelerator Physics and Neutrino Beams

III. RF Acceleration

E. Keil Capri, 14 to 17 June 2005

http://keil.home.cern.ch/keil/ MuMu/Doc/NuSchool05/talk3.pdf

Programme of Third Lecture – RF Acceleration

- Uses of RF systems
- Recapitulate parameters in longitudinal dynamics
- Synchronous particle
- Non-synchronous particle
- Phase stability
- Hamiltonian formulation
- Oscillation amplitudes
- Limits of stable motion
- Adiabatic damping

Uses of RF Systems

- Accelerate particles in synchrotrons with rising guide field B
 > 0, where RF system supplies just that amount of energy that is needed to keep particles near reference orbit
- Compensate synchrotron radiation loss $U_s = 4\pi r_c E_0 \beta^3 \gamma^4 / 3\rho$ of electrons with classical radius r_c and rest mass E_0 in ring with bending radius ρ in an e^+e^- storage ring operating at constant energy or in a synchrotron light source
- Keep beams bunched in storage rings for protons and muons, where bunch length σ_s is limited, by accelerating late particles in bunch, and decelerating early particles in bunch, pushing both towards the bunch centre

Recapitulate Parameters in Longitudinal Dynamics

• Approximate value of the average dispersion \bar{D}

 $\bar{D}\approx R/Q^2$

- Important quantities in longitudinal dynamics
 - Momentum compaction $\alpha_c = (\Delta C/C)/(\Delta p/p) \approx 1/Q^2$ with circumference C
 - Slip factor $\eta = (\Delta T/T)/(\Delta p/p) = \beta_r^2 (\Delta T/T)/(\Delta E/E) = \alpha_c 1/\gamma_r^2$ with transit time T, and β_r , γ_r for reference particle
 - Transition energy with $\eta = 0$ where relativistic factor of reference particle equal to $\gamma_t \approx Q$
- Replacing (x, x') by (D, D') in Courant-Snyder invariant yields

$$\mathcal{H} = \frac{D^2 + (\alpha D + \beta D')^2}{\beta}$$

- \mathcal{H} is a pseudo-invariant that changes only in bending magnets
- *H* determines the equilibrium beam size in machines with quantum excitation and synchrotron radiation damping

Synchronous Particle I

• Acceleration V across RF cavity with peak acceleration \hat{V} and circular frequency ω slowly varying with time or constanr

$$V = \hat{V} \int_0^t \omega dt' = \hat{V} \sin \varphi(t)$$

• ω is integer multiple, harmonic number h, of circular revolution frequency Ω_s of synchronous particle

$$\omega = h\Omega_0 = \frac{h\beta_s c}{R_s}$$

- RF system arranged such that synchronous phase φ_s is constant
- Mean bending field \overline{B}_s and synchronous momentum p_s related by

$$e\overline{B}_sR_s = p_s = m_0c(\beta\gamma)_s$$

• Rate of momentum change at constant radius

$$\frac{\mathrm{d}p_s}{\mathrm{d}t} = eR_s \frac{\mathrm{d}\overline{B}_s}{\mathrm{d}t}$$

Synchronous Particle II

• Momentum change Δp_s in one revolution within time Δt

$$\Delta p_s = eR_s \frac{\mathrm{d}\overline{B}_s}{\mathrm{d}t} \Delta t = \frac{2\pi eR_s^2}{\beta_s c} \frac{\mathrm{d}\overline{B}_s}{\mathrm{d}t}$$

• Use relativistic relation $\Delta E = c\beta\Delta p$, and convert to energy change ΔE_s in a revolution

$$\Delta E_s = c\beta_s \Delta p_s = 2\pi e R_s^2 \frac{\mathrm{d}B_s}{\mathrm{d}t}$$

• On the other hand, ΔE_s is given by the RF system

$$\Delta E_s = e\hat{V}\sin\varphi_s$$

• Solve last 2 equations for \hat{V} and conclude that $\hat{V} \propto R_s^2$

$$\hat{V} = \frac{2\pi R_s^2}{\sin\varphi_s} \frac{\mathrm{d}\overline{B}_s}{\mathrm{d}t}$$

- Strong flavour of synchrotron with $d\overline{B}_s/dt > 0$
- In e⁺e⁻ storage ring with $U_s > 0$ have simply $\hat{V} = U_s / \sin \varphi_s$

Difference Equations for Non-Synchronous Particles

• Use energy offset ΔE and RF phase φ , counted from previous zero crossing, as canonical variables

$$\varphi_{n+1} = \varphi_n + \frac{2\pi h\eta}{\beta_s E_s} \Delta E_{n+1}$$
$$\Delta E_{n+1} = \Delta E_n + eV(\sin\varphi_n - \varphi_s)$$

where n labels the RF cavity traversals, s labels the synchronous particle, h is harmonic number, E is particle energy, eV is peak acceleration in RF cavity with RF waveform $V(t) = V \sin \omega t$

• Linearise for $\Delta \varphi = \varphi - \varphi_s$, and write with matrix M

$$\begin{pmatrix} \Delta\varphi\\ \delta E \end{pmatrix}_{n+1} = \underbrace{ \begin{pmatrix} 1 + \frac{2\pi h\eta eV\cos\varphi_s}{\beta_s^2 E_s} & \frac{2\pi h\eta}{\beta_s^2 E_s}\\ eV\cos\varphi_s & 1 \end{pmatrix}}_{M} \begin{pmatrix} \Delta\varphi\\ \delta E \end{pmatrix}_n$$

Stability of Longitudinal Motion

• Use machinery of transverse motion and find stability criterion for synchrotron motion

$$0 < -\frac{\pi h \eta e V \cos \varphi_s}{2\beta_s^2 E_s} < 1$$

- Sign of η determines stable quadrant of φ
 - In machine below transition with $\eta < 0$ and $\gamma_r < \gamma_t$, stability needs $\cos \varphi_s > 0$ and $0 < \varphi_s < \pi/2$
 - In machine above transition with $\eta > 0$ and $\gamma_r > \gamma_t$, stability needs $\cos \varphi_s < 0$ and $\pi/2 < \varphi_s < \pi$
 - RF system decelerates for $\pi < \varphi_s < 2\pi$
- Find synchrotron tune Q_s from M for one turn with $2\cos 2\pi Q_s = Tr(M)$

$$Q_s = \left(-\frac{h\eta e V \cos\varphi_s}{2\pi\beta_s^2 E_s}\right)^{1/2}$$

Differential Equations of Motion

- Work to first order in deviations ΔΩ = Ω − Ω_s, Δφ = φ = φ_s, Δp = p − p_s, ΔE = E − E_s from synchronous particle with subscript s
- Distribute RF system in circumference, interpret \hat{V} as circumferential acceleration, and use revolution time τ_s
- Use canonical variables in differential equations, and choose between $(\varphi, \tau_s \Delta E)$ or $(\varphi, \Delta E / \Omega_s)$ with circular revolution frequency $\Omega_s = 1/\tau_s$
- Both products $(\varphi \tau_s \Delta E)$ and $(\varphi \Delta E / \Omega_s)$ have dimension of action
- Get differential equations from difference equations by dividing by au_s

$$\frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{2\pi h\eta}{\beta_s^2 \tau_s^2 E_s} (\tau_s \Delta E)$$
$$\frac{\mathrm{d}(\tau_s \Delta E)}{\mathrm{d}t} = eV(\sin\varphi - \sin\varphi_s)$$

• Combine to get second-order ODE for phase with precautions for slowly varying parameters E_s and η

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{E_s}{\eta}\frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{2\pi h\eta eV(\sin\varphi - \sin\varphi_s)}{\beta_s\tau_s^2}$$

Phase Stability I

• ODE for φ has first integral of motion for constant E_s and η

$$(\mathrm{d}\varphi/\mathrm{d}t)^2 + 4\pi h\eta \hat{V}(\cos\varphi + \varphi\sin\varphi_s)/\beta_s^2\tau_s^2 E_s$$

• Guess a Hamiltonian $\mathcal{H}(\varphi, W)$ with $W = \Delta E / \Omega_s$ and $\mathcal{H}(\varphi_s, 0) = 0$

$$\mathcal{H}(\varphi, W) = \frac{h\eta\Omega_s W^2}{2p_s R_0} + \frac{e\hat{V}}{2\pi} \left[\cos\varphi - \cos\varphi_s + (\varphi - \varphi_s)\sin\varphi_s\right]$$

• Phase space trajectories are level lines of \mathcal{H}

Phase Stability II

- Abscissa is phase in units of 2π
- Stable fixed point at (n, 0) with n integer
- Unstable fixed point at $(n+1/2-2\varphi_s, 0)$
- Closed trajectories around stable fixed points, limited by separatrices
- Area inside separatrices is called bucket
- Width and height of stable trajectories shrink when φ_s decreases
- Outside stationary bucket at $\varphi_s = \pi$ trajectories oscillate in energy and stream in phase
- Outside moving buckets at $\varphi_1 < \pi$ trajectories pass from top to bottom between buckets

Limits on Bucket Width in Phase

- Left edge of bucket at $\varphi_{1e} = \pi \varphi_s$
- No closed expression for right edge of bucket at φ_{2e}
- Use Hamiltonian \mathcal{H}

$$\mathcal{H}(\pi - \varphi_s, 0) == \mathcal{H}(\varphi_{2e}, 0)$$

• Find transcendental equation for φ_{2e}

• No bucket left for $\varphi_s = \pi/2$

Lower edge of bucket φ_{1e} , stable $\cos \varphi_{2e} - \varphi_{2e} \sin \varphi_{2e} = (\pi - \varphi_s) \sin \varphi_s - \cos \varphi_s$ phase angle φ_s and upper edge of bucket φ_{2e} as functions of $\sin \varphi_s$

Bucket Area

Bucket area defined as area inside separatrix for given φ_s, and known analytically only for stationary buckets with Γ = sin φ_s = 0

$$A(0) = \frac{8\beta_s}{\pi f_{\rm RF}} \left(\frac{e\hat{V}E}{2\pi h\eta}\right)^{1/2}$$

- $A(\Gamma) < A(0)$ for $\Gamma > 0$
- $A(\Gamma)$ only known numerically
- $A(\Gamma) \to 0$ for $\Gamma \to 1$
- $A(\Gamma)$ has dimension eVs
- Graph shows $A(\varphi_s)/A(0)$ in first quadrant
- Note different origin of φ : Stationary buckets have $\varphi_s = 0$

