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Programme of Third Lecture – RF Acceleration

• Uses of RF systems

• Recapitulate parameters in longitudinal dynamics

• Synchronous particle

• Non-synchronous particle

• Phase stability

• Hamiltonian formulation

• Oscillation amplitudes

• Limits of stable motion

• Adiabatic damping
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Uses of RF Systems

• Accelerate particles in synchrotrons with rising guide field Ḃ > 0, where RF

system supplies just that amount of energy that is needed to keep particles near

reference orbit

• Compensate synchrotron radiation loss Us = 4πrcE0β3γ4/3ρ of electrons with

classical radius rc and rest mass E0 in ring with bending radius ρ in an

e+e−storage ring operating at constant energy or in a synchrotron light source

• Keep beams bunched in storage rings for protons and muons, where bunch length

σs is limited, by accelerating late particles in bunch, and decelerating early

particles in bunch, pushing both towards the bunch centre
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Recapitulate Parameters in Longitudinal Dynamics

• Approximate value of the average dispersion D̄

D̄ ≈ R/Q2

• Important quantities in longitudinal dynamics

– Momentum compaction αc = (∆C/C)/(∆p/p) ≈ 1/Q2 with circumference
C

– Slip factor η = (∆T/T )/(∆p/p) = β2
r (∆T/T )/(∆E/E) = αc − 1/γ2

r

with transit time T , and βr , γr for reference particle

– Transition energy with η = 0 where relativistic factor of reference particle
equal to γt ≈ Q

• Replacing (x, x′) by (D, D′) in Courant-Snyder invariant yields

H =
D2 + (αD + βD′)2

β

• H is a pseudo-invariant that changes only in bending magnets

• H determines the equilibrium beam size in machines with quantum excitation and
synchrotron radiation damping
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Synchronous Particle I

• Acceleration V across RF cavity with peak acceleration V̂ and circular frequency
ω slowly varying with time or constanr

V = V̂

∫ t

0

ωdt′ = V̂ sin ϕ(t)

• ω is integer multiple, harmonic number h, of circular revolution frequency Ωs of
synchronous particle

ω = hΩ0 =
hβsc

Rs

• RF system arranged such that synchronous phase ϕs is constant

• Mean bending field Bs and synchronous momentum ps related by

eBsRs = ps = m0c(βγ)s

• Rate of momentum change at constant radius

dps

dt
= eRs

dBs

dt
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Synchronous Particle II

• Momentum change ∆psin one revolution within time ∆t

∆ps = eRs
dBs

dt
∆t =

2πeR2
s

βsc

dBs

dt

• Use relativistic relation ∆E = cβ∆p, and convert to energy change ∆Es in a
revolution

∆Es = cβs∆ps = 2πeR2
s

dBs

dt

• On the other hand, ∆Es is given by the RF system

∆Es = eV̂ sin ϕs

• Solve last 2 equations for V̂ and conclude that V̂ ∝ R2
s

V̂ =
2πR2

s

sin ϕs

dBs

dt

• Strong flavour of synchrotron with dBs/dt > 0

• In e+e− storage ring with Us > 0 have simply V̂ = Us/ sin ϕs
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Difference Equations for Non-Synchronous Particles

• Use energy offset ∆E and RF phase ϕ, counted from previous zero crossing, as

canonical variables

ϕn+1 = ϕn +
2πhη

βsEs
∆En+1

∆En+1 = ∆En + eV (sin ϕn − ϕs)

where n labels the RF cavity traversals, s labels the synchronous particle, h is

harmonic number, E is particle energy, eV is peak acceleration in RF cavity with

RF waveform V (t) = V sin ωt

• Linearise for ∆ϕ = ϕ − ϕs, and write with matrix M
(

∆ϕ

δE

)

n+1

=

(

1 + 2πhηeV cos ϕs

β2
sEs

2πhη

β2
sEs

eV cos ϕs 1

)

︸ ︷︷ ︸

M

(

∆ϕ

δE

)

n
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Stability of Longitudinal Motion

• Use machinery of transverse motion and find stability criterion for synchrotron

motion

0 < −
πhηeV cos ϕs

2β2
s Es

< 1

• Sign of η determines stable quadrant of ϕ

– In machine below transition with η < 0 and γr < γt, stability needs

cos ϕs > 0 and 0 < ϕs < π/2

– In machine above transition with η > 0 and γr > γt, stability needs

cos ϕs < 0 and π/2 < ϕs < π

– RF system decelerates for π < ϕs < 2π

• Find synchrotron tune Qs from M for one turn with 2 cos 2πQs = Tr(M)

Qs =

(

−
hηeV cos ϕs

2πβ2
sEs

)1/2
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Differential Equations of Motion

• Work to first order in deviations ∆Ω = Ω − Ωs, ∆ϕ = ϕ = ϕs, ∆p = p − ps,
∆E = E − Es from synchronous particle with subscript s

• Distribute RF system in circumference, interpret V̂ as circumferential acceleration,
and use revolution time τs

• Use canonical variables in differential equations, and choose between (ϕ, τs∆E)

or (ϕ, ∆E/Ωs) with circular revolution frequency Ωs = 1/τs

• Both products (ϕτs∆E) and (ϕ∆E/Ωs) have dimension of action

• Get differential equations from difference equations by dividing by τs

dϕ

dt
=

2πhη

β2
sτ2

s Es
(τs∆E)

d(τs∆E)

dt
= eV (sin ϕ − sin ϕs)

• Combine to get second-order ODE for phase with precautions for slowly varying
parameters Es and η

d

dt

Es

η

dϕ

dt
=

2πhηeV (sin ϕ − sin ϕs)

βsτ2
s
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Phase Stability I

• ODE for ϕ has first integral of motion for constant Es and η

(dϕ/dt)2 + 4πhηV̂ (cos ϕ + ϕ sin ϕs)/β2
sτ2

s Es

• Guess a Hamiltonian H(ϕ, W ) with W = ∆E/Ωs and H(ϕs, 0) = 0

H(ϕ, W ) =
hηΩsW 2

2psR0

+
eV̂

2π
[cos ϕ − cos ϕs + (ϕ − ϕs) sin ϕs]

• Phase space trajectories are level lines of H
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Phase Stability II
• Abscissa is phase in units of 2π

• Stable fixed point at (n, 0) with n integer

• Unstable fixed point at (n+1/2−2ϕs, 0)

• Closed trajectories around stable fixed

points, limited by separatrices

• Area inside separatrices is called bucket

• Width and height of stable trajectories

shrink when ϕs decreases

• Outside stationary bucket at ϕs = π tra-

jectories oscillate in energy and stream in

phase

• Outside moving buckets at ϕ1 < π tra-

jectories pass from top to bottom between

buckets
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Trajectories and Buckets

• Trajectories inside moving bucket and separatrix for ϕs = 3π/4

• Separatrices for 2π/3 ≤ ϕs ≤ π in π/12 steps

• Bucket height, width and area shrink when ϕs decreases from ϕs = π

• Formulae for bucket height, width and area?
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Bucket Height
• Use Hamiltonian H and solve for W

H(π − ϕs, 0) == H(ϕs, W )

• LHS is H at unstable fixed point

• RHS is H at phase of stable fixed point

• Solution for half bucket height ∆Eb

Es

∆Eb

Es
= βs

(
2eV̂

πhηEs

)1/2

B(ϕs)

with

B(ϕs) =
√

|(π/2 − ϕs) sin ϕs − cos ϕs|

and B(ϕs) → 1 for sin ϕs → 0

• Convert to momentum with ∆p/p =

β−2∆E/E
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Limits on Bucket Width in Phase
• Left edge of bucket at ϕ1e = π − ϕs

• No closed expression for right edge of bucket at

ϕ2e

• Use Hamiltonian H

H(π − ϕs, 0) == H(ϕ2e, 0)

• Find transcendental equation for ϕ2e

cos ϕ2e−ϕ2e sin ϕ2e = (π−ϕs) sin ϕs−cos ϕs

• No bucket left for ϕs = π/2

Lower edge of bucket ϕ1e, stable

phase angle ϕs and upper edge of

bucket ϕ2e as functions of sin ϕs
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Bucket Area
• Bucket area defined as area inside sep-

aratrix for given ϕs, and known an-

alytically only for stationary buckets

with Γ = sin ϕs = 0

A(0) =
8βs

πfRF

(
eV̂ E

2πhη

)1/2

• A(Γ) < A(0) for Γ > 0

• A(Γ) only known numerically

• A(Γ) → 0 for Γ → 1

• A(Γ) has dimension eVs

• Graph shows A(ϕs)/A(0) in first

quadrant

• Note different origin of ϕ: Stationary

buckets have ϕs = 0

E. Keil page 15


