Accelerator Physics and Neutrino Beams

III. RF Acceleration

E. Keil
Capri, 14 to 17 June 2005

http://keil.home.cern.ch/keil/ MuMu/Doc/NuSchool05/talk3.pdf

Programme of Third Lecture - RF Acceleration

- Uses of RF systems
- Recapitulate parameters in longitudinal dynamics
- Synchronous particle
- Non-synchronous particle
- Phase stability
- Hamiltonian formulation
- Oscillation amplitudes
- Limits of stable motion
- Adiabatic damping

Uses of RF Systems

- Accelerate particles in synchrotrons with rising guide field $\dot{B}>0$, where RF system supplies just that amount of energy that is needed to keep particles near reference orbit
- Compensate synchrotron radiation loss $U_{s}=4 \pi r_{c} E_{0} \beta^{3} \gamma^{4} / 3 \rho$ of electrons with classical radius r_{c} and rest mass E_{0} in ring with bending radius ρ in an $\mathrm{e}^{+} \mathrm{e}^{-}$storage ring operating at constant energy or in a synchrotron light source
- Keep beams bunched in storage rings for protons and muons, where bunch length σ_{s} is limited, by accelerating late particles in bunch, and decelerating early particles in bunch, pushing both towards the bunch centre

Recapitulate Parameters in Longitudinal Dynamics

- Approximate value of the average dispersion \bar{D}

$$
\bar{D} \approx R / Q^{2}
$$

- Important quantities in longitudinal dynamics
- Momentum compaction $\alpha_{c}=(\Delta C / C) /(\Delta p / p) \approx 1 / Q^{2}$ with circumference C
- Slip factor $\eta=(\Delta T / T) /(\Delta p / p)=\beta_{r}^{2}(\Delta T / T) /(\Delta E / E)=\alpha_{c}-1 / \gamma_{r}^{2}$ with transit time T, and β_{r}, γ_{r} for reference particle
- Transition energy with $\eta=0$ where relativistic factor of reference particle equal to $\gamma_{t} \approx Q$
- Replacing $\left(x, x^{\prime}\right)$ by $\left(D, D^{\prime}\right)$ in Courant-Snyder invariant yields

$$
\mathcal{H}=\frac{D^{2}+\left(\alpha D+\beta D^{\prime}\right)^{2}}{\beta}
$$

- \mathcal{H} is a pseudo-invariant that changes only in bending magnets
- \mathcal{H} determines the equilibrium beam size in machines with quantum excitation and synchrotron radiation damping

Synchronous Particle I

- Acceleration V across RF cavity with peak acceleration \hat{V} and circular frequency ω slowly varying with time or constanr

$$
V=\hat{V} \int_{0}^{t} \omega \mathrm{~d} t^{\prime}=\hat{V} \sin \varphi(t)
$$

- ω is integer multiple, harmonic number h, of circular revolution frequency Ω_{s} of synchronous particle

$$
\omega=h \Omega_{0}=\frac{h \beta_{s} c}{R_{s}}
$$

- RF system arranged such that synchronous phase φ_{s} is constant
- Mean bending field \bar{B}_{s} and synchronous momentum p_{s} related by

$$
e \bar{B}_{s} R_{s}=p_{s}=m_{0} c(\beta \gamma)_{s}
$$

- Rate of momentum change at constant radius

$$
\frac{\mathrm{d} p_{s}}{\mathrm{~d} t}=e R_{s} \frac{\mathrm{~d} \bar{B}_{s}}{\mathrm{~d} t}
$$

Synchronous Particle II

- Momentum change Δp_{s} in one revolution within time Δt

$$
\Delta p_{s}=e R_{s} \frac{\mathrm{~d} \bar{B}_{s}}{\mathrm{~d} t} \Delta t=\frac{2 \pi e R_{s}^{2}}{\beta_{s} c} \frac{\mathrm{~d} \bar{B}_{s}}{\mathrm{~d} t}
$$

- Use relativistic relation $\Delta E=c \beta \Delta p$, and convert to energy change ΔE_{s} in a revolution

$$
\Delta E_{s}=c \beta_{s} \Delta p_{s}=2 \pi e R_{s}^{2} \frac{\mathrm{~d} \bar{B}_{s}}{\mathrm{~d} t}
$$

- On the other hand, ΔE_{s} is given by the RF system

$$
\Delta E_{s}=e \hat{V} \sin \varphi_{s}
$$

- Solve last 2 equations for \hat{V} and conclude that $\hat{V} \propto R_{s}^{2}$

$$
\hat{V}=\frac{2 \pi R_{s}^{2}}{\sin \varphi_{s}} \frac{\mathrm{~d} \bar{B}_{s}}{\mathrm{~d} t}
$$

- Strong flavour of synchrotron with $\mathrm{d} \bar{B}_{s} / \mathrm{d} t>0$
- In $\mathrm{e}^{+} \mathrm{e}^{-}$storage ring with $U_{s}>0$ have simply $\hat{V}=U_{s} / \sin \varphi_{s}$

Difference Equations for Non-Synchronous Particles

- Use energy offset ΔE and RF phase φ, counted from previous zero crossing, as canonical variables

$$
\begin{aligned}
\varphi_{n+1} & =\varphi_{n}+\frac{2 \pi h \eta}{\beta_{s} E_{s}} \Delta E_{n+1} \\
\Delta E_{n+1} & =\Delta E_{n}+e V\left(\sin \varphi_{n}-\varphi_{s}\right)
\end{aligned}
$$

where n labels the RF cavity traversals, s labels the synchronous particle, h is harmonic number, E is particle energy, $e V$ is peak acceleration in RF cavity with RF waveform $V(t)=V \sin \omega t$

- Linearise for $\Delta \varphi=\varphi-\varphi_{s}$, and write with matrix M

$$
\binom{\Delta \varphi}{\delta E}_{n+1}=\underbrace{\left(\begin{array}{cc}
1+\frac{2 \pi h \eta e V \cos \varphi_{s}}{\beta_{s}^{2} E_{s}} & \frac{2 \pi h \eta}{\beta_{s}^{2} E_{s}} \\
e V \cos \varphi_{s} & 1
\end{array}\right)}_{M}\binom{\Delta \varphi}{\delta E}_{n}
$$

Stability of Longitudinal Motion

- Use machinery of transverse motion and find stability criterion for synchrotron motion

$$
0<-\frac{\pi h \eta e V \cos \varphi_{s}}{2 \beta_{s}^{2} E_{s}}<1
$$

- Sign of η determines stable quadrant of φ
- In machine below transition with $\eta<0$ and $\gamma_{r}<\gamma_{t}$, stability needs $\cos \varphi_{s}>0$ and $0<\varphi_{s}<\pi / 2$
- In machine above transition with $\eta>0$ and $\gamma_{r}>\gamma_{t}$, stability needs $\cos \varphi_{s}<0$ and $\pi / 2<\varphi_{s}<\pi$
- RF system decelerates for $\pi<\varphi_{s}<2 \pi$
- Find synchrotron tune Q_{s} from M for one turn with $2 \cos 2 \pi Q_{s}=\operatorname{Tr}(M)$

$$
Q_{s}=\left(-\frac{h \eta e V \cos \varphi_{s}}{2 \pi \beta_{s}^{2} E_{s}}\right)^{1 / 2}
$$

Differential Equations of Motion

- Work to first order in deviations $\Delta \Omega=\Omega-\Omega_{s}, \Delta \varphi=\varphi=\varphi_{s}, \Delta p=p-p_{s}$, $\Delta E=E-E_{s}$ from synchronous particle with subscript s
- Distribute RF system in circumference, interpret \hat{V} as circumferential acceleration, and use revolution time τ_{s}
- Use canonical variables in differential equations, and choose between $\left(\varphi, \tau_{s} \Delta E\right)$ or $\left(\varphi, \Delta E / \Omega_{s}\right)$ with circular revolution frequency $\Omega_{s}=1 / \tau_{s}$
- Both products $\left(\varphi \tau_{s} \Delta E\right)$ and $\left(\varphi \Delta E / \Omega_{s}\right)$ have dimension of action
- Get differential equations from difference equations by dividing by τ_{s}

$$
\begin{aligned}
\frac{\mathrm{d} \varphi}{\mathrm{~d} t} & =\frac{2 \pi h \eta}{\beta_{s}^{2} \tau_{s}^{2} E_{s}}\left(\tau_{s} \Delta E\right) \\
\frac{\mathrm{d}\left(\tau_{s} \Delta E\right)}{\mathrm{d} t} & =e V\left(\sin \varphi-\sin \varphi_{s}\right)
\end{aligned}
$$

- Combine to get second-order ODE for phase with precautions for slowly varying parameters E_{s} and η

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{E_{s}}{\eta} \frac{\mathrm{~d} \varphi}{\mathrm{~d} t}=\frac{2 \pi h \eta e V\left(\sin \varphi-\sin \varphi_{s}\right)}{\beta_{s} \tau_{s}^{2}}
$$

Phase Stability I

- ODE for φ has first integral of motion for constant E_{s} and η

$$
(\mathrm{d} \varphi / \mathrm{d} t)^{2}+4 \pi h \eta \hat{V}\left(\cos \varphi+\varphi \sin \varphi_{s}\right) / \beta_{s}^{2} \tau_{s}^{2} E_{s}
$$

- Guess a Hamiltonian $\mathcal{H}(\varphi, W)$ with $W=\Delta E / \Omega_{s}$ and $\mathcal{H}\left(\varphi_{s}, 0\right)=0$

$$
\mathcal{H}(\varphi, W)=\frac{h \eta \Omega_{s} W^{2}}{2 p_{s} R_{0}}+\frac{e \hat{V}}{2 \pi}\left[\cos \varphi-\cos \varphi_{s}+\left(\varphi-\varphi_{s}\right) \sin \varphi_{s}\right]
$$

- Phase space trajectories are level lines of \mathcal{H}

$$
\varphi_{s}=\pi
$$

$$
\varphi_{s}=5 \pi / 6
$$

$$
\varphi_{s}=3 \pi / 4
$$

Phase Stability II

- Abscissa is phase in units of 2π
- Stable fixed point at $(n, 0)$ with n integer
- Unstable fixed point at $\left(n+1 / 2-2 \varphi_{s}, 0\right)$
- Closed trajectories around stable fixed points, limited by separatrices
- Area inside separatrices is called bucket
- Width and height of stable trajectories shrink when φ_{s} decreases
- Outside stationary bucket at $\varphi_{s}=\pi$ trajectories oscillate in energy and stream in phase

- Outside moving buckets at $\varphi_{1}<\pi$ trajectories pass from top to bottom between

$$
\varphi_{s}=3 \pi / 4
$$ buckets

Trajectories and Buckets

- Trajectories inside moving bucket and separatrix for $\varphi_{s}=3 \pi / 4$
- Separatrices for $2 \pi / 3 \leq \varphi_{s} \leq \pi$ in $\pi / 12$ steps
- Bucket height, width and area shrink when φ_{s} decreases from $\varphi_{s}=\pi$
- Formulae for bucket height, width and area?

Bucket Height

- Use Hamiltonian \mathcal{H} and solve for W

$$
\mathcal{H}\left(\pi-\varphi_{s}, 0\right)==\mathcal{H}\left(\varphi_{s}, W\right)
$$

- LHS is \mathcal{H} at unstable fixed point
- RHS is \mathcal{H} at phase of stable fixed point
- Solution for half bucket height $\frac{\Delta E_{b}}{E_{s}}$

$$
\frac{\Delta E_{b}}{E_{s}}=\beta_{s}\left(\frac{2 e \hat{V}}{\pi h \eta E_{s}}\right)^{1 / 2} B\left(\varphi_{s}\right)
$$

with

$B\left(\varphi_{s}\right)$ vs. $\sin \varphi_{s}$
and $B\left(\varphi_{s}\right) \rightarrow 1$ for $\sin \varphi_{s} \rightarrow 0$

- Convert to momentum with $\Delta p / p=$ $\beta^{-2} \Delta E / E$

Limits on Bucket Width in Phase

- Left edge of bucket at $\varphi_{1 e}=\pi-\varphi_{s}$
- No closed expression for right edge of bucket at $\varphi_{2 e}$
- Use Hamiltonian \mathcal{H}

$$
\mathcal{H}\left(\pi-\varphi_{s}, 0\right)==\mathcal{H}\left(\varphi_{2 e}, 0\right)
$$

- Find transcendental equation for $\varphi_{2 e}$

Lower edge of bucket $\varphi_{1 e}$, stable $\cos \varphi_{2 e}-\varphi_{2 e} \sin \varphi_{2 e}=\left(\pi-\varphi_{s}\right) \sin \varphi_{s}-\cos \varphi_{\text {phase }}$ angle φ_{s} and upper edge of

- No bucket left for $\varphi_{s}=\pi / 2$ bucket $\varphi_{2 e}$ as functions of $\sin \varphi_{s}$

Bucket Area

- Bucket area defined as area inside separatrix for given φ_{s}, and known analytically only for stationary buckets with $\Gamma=\sin \varphi_{s}=0$

$$
A(0)=\frac{8 \beta_{s}}{\pi f_{\mathrm{RF}}}\left(\frac{e \hat{V} E}{2 \pi h \eta}\right)^{1 / 2}
$$

- $A(\Gamma)<A(0)$ for $\Gamma>0$
- $A(\Gamma)$ only known numerically
- $A(\Gamma) \rightarrow 0$ for $\Gamma \rightarrow 1$
- $A(\Gamma)$ has dimension eVs
- Graph shows $A\left(\varphi_{s}\right) / A(0)$ in first
 quadrant
- Note different origin of φ : Stationary buckets have $\varphi_{s}=0$

