Accelerator Physics and Neutrino Beams

Tutorial I - Effects of Errors

E. Keil
Capri, 14 to 17 June 2005

http://keil.home.cern.ch/keil/
MuMu/Doc/NuSchool05/tutorial1.pdf

Programme of First Tutorial - Effects of Errors

- Field errors
- Correction of the closed orbit
- Gradient errors

Effect of Single Field Error

- Field errors caused by excitation errors of dipoles and alignment errors of quadrupoles
- Simple example of field error in single element, causing kick $\phi=\delta B \ell / B \rho$
- Closed orbit at location of kick with subscript k given by

$$
\binom{u}{u^{\prime}}=\left(\begin{array}{cc}
\cos \mu+\alpha_{k} \sin \mu & \beta_{k} \sin \mu \\
-\gamma_{k} \sin \mu & \cos \mu-\alpha_{k} \sin \mu
\end{array}\right)\binom{u}{u^{\prime}+\phi}
$$

- Solution

$$
\binom{u_{k}}{u_{k}^{\prime}}=\binom{(1 / 2) \beta_{k} \phi \cot \mu / 2}{-(1 / 2) \phi\left(1+\alpha_{k} \cot \mu / 2\right)}
$$

- Invariant

$$
E=(1 / 2) \beta(\phi \cot \mu / 2)^{2}
$$

- Integral resonance with $u, u^{\prime}, E \rightarrow \infty$ for $\mu \rightarrow 2 n \pi$ or $Q \rightarrow n$, where n is an integer

Effect of Many Field Errors

- Use normalised phase space $\left(v, v^{\prime}\right)$ and Green function of driven harmonic oscillator

$$
\frac{\mathrm{d}^{2} v}{\mathrm{~d} \varphi^{2}}+Q^{2} v=Q^{2} \beta^{3 / 2} \Delta B(\varphi) / B \rho
$$

- Find periodic solution with $f(\varphi)=\beta^{3 / 2} \Delta B(\varphi) / B \rho$

$$
v(\varphi)=\frac{Q}{2 \sin \pi Q} \int_{\varphi}^{\varphi+2 \pi} f(\psi) \cos Q(\pi+\varphi-\psi)
$$

- Get insight into resonant behaviour of closed orbit by Fourier expansion

$$
f(\varphi)=\sum_{k} f_{k} \exp (i k \varphi) \quad f_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\varphi) \exp (-i k \varphi)
$$

- Periodic solution

$$
v(\varphi)=\sum_{k} \frac{Q^{2} f_{k} \exp (i k \varphi)}{Q^{2}-k^{2}}
$$

- Closed orbit most sensitive to harmonics $k \approx Q$

Correction of Closed Orbit

- Closed orbits get corrected in practically all machines by
- Measuring orbit positions with beam position monitors, typically three to four in betatron wavelength
- Calculating suitable set of corrections
- Exciting orbit correction dipoles or windings on existing magnets to counteract effects of alignment and excitation errors
- Essentially two styles of correction
- Harmonic correction: Fourier analyse orbit offsets, compensate harmonics near to Q
- Most efficient correctors: Find corrector which reduces orbit distortion most, then find a second, third, . . . corrector
- Achieve first closed orbit inside aperture by threading, i.e. using few upstream orbit readings and correctors to advance injected beam through pieces of machine

Effects of Single Gradient Error I

- Treat gradient error as short element with strength δ and get new matrix for one turn, where subscripts 0 mark unperturbed values

$$
\begin{aligned}
M & =\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
\delta & 1
\end{array}\right)\left(\begin{array}{cc}
\cos \mu_{0}+\alpha_{0} \sin \mu_{0} & \beta_{0} \sin \mu_{0} \\
-\gamma_{0} \sin \mu_{0} & \cos \mu_{0}-\alpha_{0} \sin \mu_{0}
\end{array}\right)
\end{aligned}
$$

- Trace of M yields tune shift ΔQ ans stopband width δQ

$$
(1 / 2) \operatorname{Tr}(M)=\cos \mu=\cos \mu_{0}+\left(\beta_{0} \delta / 2\right) \sin \mu_{0}
$$

- Phase shift $\Delta \mu$ and tune shift ΔQ for $\delta \ll 1$ and $\sin \mu_{0} \neq 0$

$$
\Delta \mu=-\beta_{0} \delta / 2 \quad \Delta Q=-\beta_{0} \delta / 4 \pi
$$

- Observing ΔQ for given δ yields β_{0}
- Half-integral stopbands occur with $|\cos \mu|>1$ around $\mu_{0}=n \pi$ or $Q=n / 2$ with width $\delta Q=\beta_{0} \delta / 2 \pi$

Effects of Single Gradient Error II

- Element m_{12} of perturbed matrix M yields change $\Delta \beta$ at gradient perturbation for $\delta \ll 1$

$$
\Delta \beta=-(\beta \delta / 2) \cot \mu_{0}
$$

- Change $\Delta \beta_{2}$ at phase μ_{2} from δ at β_{1} and phase μ_{1} is for $\delta \ll 1$

$$
\Delta \beta_{2}=\frac{\delta \beta_{1} \beta_{2} \cos \left[2 \pi Q-2\left(\mu_{2}-\mu_{1}\right)\right]}{\sin 2 \pi Q}
$$

- Denominator vanishes at $Q=n / 2$ where n is an integer
- Generalisation for gradient perturbation $k(s)$ around circumference for ΔQ and δQ

$$
\Delta Q=-\frac{1}{4 \pi} \int_{0}^{C} \beta(s) k(s) \mathrm{d} s \quad \delta Q=2|\Delta Q|
$$

- Generalisation for gradient perturbation $k(s)$ around circumference for $\Delta \beta$

$$
\delta \beta(s)=\frac{\beta(s)}{2 \sin 2 \pi Q} \int_{s}^{s+C} k(\sigma) \beta(\sigma) \cos [2 \pi Q+\mu(\sigma)-\mu(s)] \mathrm{d} \sigma
$$

