

Eligio Lisi, INFN, Bari, Italy

LECTURE III

An almost up-to-date phenomenological overview of the three-neutrino mass-mixing parameters (complete 2005 update + details in next lecture) 1

Outline:

- Overview of 3v mass-mixing parameters
- Constraints from v oscillation searches
- Constraints from non-oscillation searches
- Combining oscill. & non-oscill. v observables
- Beyond the standard 3v scenario (LSND)
- Conclusions

3v mixing - brief recap

• Neutrinos fields mix:

$$(\nu_e, \nu_\mu, \nu_\tau)^T = U(\nu_1, \nu_2, \nu_3)^T$$

• The standard rotation ordering of the CKM matrix for quarks happens to be useful also for neutrinos:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

... but with very different angles - we shall see that:

$$s_{23}^2 \sim 0.5$$
 $s_{13}^2 < \text{few \%}$ $s_{12}^2 \sim 0.3$

 Only if s²₁₃≠0 one can hope to probe the CP-violating phase δ ("holy grail" of future ν oscillation experiments like nu-factories)

Neutrino fields mix ... and oscillate, with at least two frequencies. "Textbook" plots:

 Δm^2 -driven oscillations

δm^2 -driven oscillations

(about half-period seen in both cases)

5

Two macroscopic oscillation	lengths gov	verned by δm	2 and Δm^2 ,
with amplitudes governed by	<mark>y</mark> θ _{ii} . Leadir	ng expt. sens	sitivities:

(∆m², θ ₂₃ , θ ₁₃)	Atmospheric v , K2K long baseline accelerator (a)
$(\delta m^2, \theta_{12}, \theta_{13})$	Solar v , KamLAND long baseline reactor v (b)
(Δm², θ ₁₃)	CHOOZ short-baseline reactor $v^{(a,b)}$

- (a) (v_1, v_2) difference weakly probed
- (b) (v_{μ}, v_{τ}) difference not probed

Status of 3-neutrino framework:

 $(\Delta m^2, \theta_{23})$ $(\delta m^2, \theta_{12})$ $V_{MSW} = 0$ V_{MSW} ≠ 0 θ_{13} μ Sign(Δm^2) δ φ_2, φ_3

. . .

robust upper + lower bound from atmospheric & accelerator data robust upper + lower bound from solar & reactor data L/E vacuum osc. pattern recently seen in atm. & react. data matter effects recently established in solar neutrinos upper bound from CHOOZ reactor data + above data upper bound from laboratory (+ 1st lower bound?) & cosmology unknown (is the hierarchy normal or inverted ?) unknown (is there leptonic CP violation?) unknown (are there Majorana phases?)

Questions beyond the standard 3-neutrino framework:

dim(H)=3+N _s	?	Light sterile neutrinos?
V=V _{MSW} +ΔV	?	New (subleading) interactions in medium?
H ≠ H⁺	?	Neutrino decay ?
idv/dx ≠ Hv	?	Non-hamiltonian evolution (decoherence)?

3v mass² spectrum and flavor content ($e \mu \tau$)

Absolute mass scale μ unknown [but < O(eV)] Hierarchy [sign(Δm^2)] unknown v_e content of v_3 unknown [but < few%]

 $\delta m^2 \simeq 8.0 \times 10^{-5} \text{ eV}^2$ ("solar" splitting) $\Delta m^2 \simeq 2.4 \times 10^{-3} \text{ eV}^2$ ("atmospheric" splitting) Constraints on (Δm^2 , θ_{23} , θ_{13}) from SK + K2K + CHOOZ 8

 v_e induced events: ~ as expected v_{μ} induced events: deficit from below Channel $v_{\mu} \rightarrow v_e$? No (or subdominant) Channel $v_{\mu} \rightarrow v_{\tau}$? Yes (dominant)

Atmospheric neutrinos: Super-Kamiokande

Super-Kamiokande atmospheric v

 $E_{\nu} \sim 10^{-1} - 10^3 \text{ GeV}$ $L \sim 10 - 10^4 \text{ km}$ (large L/E range)

For θ_{13} ~0 and δm^2 ~0, a very simple formula fits all SK data (+ MACRO & Soudan2)

$$P(\nu_{\mu} \to \nu_{\tau}) \simeq \sin^2 2\theta_{23} \, \sin^2 \left(1.27 \frac{\Delta m^2 (eV)^2 \, L(km)}{E(GeV)} \right)$$

1st oscillation dip still visible despite large L & E smearing

First-generation LBL accelerator experiment: KEK-to-Kamioka (K2K)

Aimed at testing disappearance of accelerator v_{μ} in the same range probed by atmospheric v:

(L/E)_{K2K}~(250 km/1.3 GeV)~(L/E)_{ATM}

2002: muon disappearance observed at >99% C.L.

No electron appearance.

Atmospheric v oscillation evidence robust & confirmed with lab-v in K2K Many interesting details depend on theoretical input & subleading effects

Contours at 1, 2, 3σ (1 dof). Note linear scale for Δm^2 and $\sin^2\theta_{23}$, with 2nd octant of θ_{23} unfolded

... more about subleading effects (induced by "solar parameters") vs systematic errors

in the Super-Kamiokande zenith distributions

The CHOOZ reactor experiment and θ_{13}

- Searched for disappearance of reactor $\nu_{\rm e}$ (E~few MeV) at distance L=1 km
- L/E range comparable to atmospheric ν
 → probe the same Δm²
- No disappearance signal was found (1998) \rightarrow Exclusion plot in (Δm^2 , θ_{13}) plane
- Results also confirmed by later reactor experiment (Palo Verde)

A crucial and beautiful "small-scale" experiment

The CHOOZ reactor experiment and θ_{13}

At the Δm^2 scale of SK+K2K, nonobservation of $v_e \rightarrow v_e$ in the CHOOZ reactor experiment sets upper bounds $\sin^2\theta_{13}$ < few %

Growing literature & interest in subleading effects due to θ_{13} , δm^2 , sign(Δm^2), δ But need very significant error reduction to probe them A challenge for future high-statistics experiments

Missing piece in puzzle: v_{τ} appearance (only 2-sigma hint in Super-K)

Will be studied at Laboratori Nazionali del Gran Sasso (OPERA, ICARUS) with CERN neutrino beam

Constraints on $(\delta m^2, \theta_{12}, \theta_{13})$ from solar v + KamLAND

Solar neutrinos (v_e)

The Sun seen with neutrinos (SK)

Earth orbit from solar v (SK)

Standard Solar Model: neutrino energy spectrum...

... and experimental deficit

Reminder - Solar $v_e \rightarrow v_{e,\mu,\tau}$ vs atmospheric $v_\mu \rightarrow v_\tau$: matter (MSW) effect

Atmospheric v_{μ} and v_{τ} feel background fermions in the same way (through NC); no relative phase change (~ vacuum-like)

But v_e , in addition to NC, have CC interac. with background electrons (density N_e). Energy difference: $V = \sqrt{2} G_F N_e$

Solar v analysis must account for MSW effects in the Sun and in the Earth (Earth matter effects negligible for KamLAND reactor neutrinos) Solar+KamLAND combination provide evidence for V_{sun} (not yet for V_{earth})

Reminder - Solar neutrinos: Oscillation analysis

- Leading parameters: $(\delta m^2, \theta_{12})$
- MSW effects must be carefully taken into account
 - → need electron density profile in the Sun (always) ...

... and in the Earth (for night-time trajectories)

Solar neutrinos: The 1st SNO breakthrough (2002)

- Solar neutrino deficit in Cl, Ga, Č expt.: model-independent proof desirable
- Proof provided beyond any doubt by CC/NC event ratio in SNO:

$$R = \frac{R_{CC}}{R_{NC}} = \frac{\Phi(\nu_e)}{\Phi(\nu_e) + \Phi(\nu_\mu) + \Phi(\nu_\tau)} = P(\nu_e \to \nu_e) \text{ independently of SSM}$$

• R~1/3 was found \rightarrow solar v_e must oscillate into v_{ut}

Solar neutrinos: Oscillation analysis (as of summer 2002)

Man-made reactor neutrinos: KamLAND

- Average distance: ~180 km (two orders of magnitude greater than CHOOZ)
- CHOOZ was mainly sensitive to $\Delta m^2 \sim few \times 10^{-3} eV^2$
- KamLAND is mainly sensitive to $\delta m^2 \sim few \times 10^{-5} eV^2$ (LMA range!)
- KamLAND also opens fundamental new field of geoneutrino physics

KamLAND breakthrough (December 2002)

Disappearance of reactor V_e measured

LMA solution confirmed; all others ruled out

KamLAND 2002

...after KamLAND

Maximal θ_{12} mixing not ruled out in 2002

Why should we care about (non)maximal θ_{12}

In LMA, SNO CC/NC can be <0.5 only WITH matter effects AND mixing $\pi/4$

The 2nd SNO breakthrough (September 2003): maximal mixing ruled out

Compelling evidence for matter effects in the Sun

LMA analysis (as of september 2003)

Still: LMA-I vs LMA-II ambiguity

Before SNO 2003

After SNO 2003

... in 2004 (KamLAND-II with revised background): unique Large Mixing Angle solution, and change to linear scales...

+ evidence for oscillatory effects in KamLAND reactor L/E spectrum

What about MSW effects?

Exercise: (1) Change MSW potential "by hand," V →a_{MSW}V
 (2) Reanalyze all data with (δm²,θ₁₂,a_{MSW}) free
 (3) Project (δm²,θ₁₂) away and check if a_{MSW}~1

(... a way of "measuring" G_F through solar neutrino oscillations ...)

Results: with 2004 data, a_{MSW} ~1 confirmed within factor of ~2 and a_{MSW} ~0 excluded \rightarrow Evidence for standard MSW effects in the Sun

But: expected subleading effect in the Earth (day-night difference) still below experimental uncertainties.

2005 (March): new data + detailed analysis from SNO

Previous results basically confirmed

Slightly higher ratio $CC/NC \sim P(v_e \rightarrow v_e)$

Slight shift (<1 σ upwards) of allowed range for θ_{12}

3v analysis of 2004 solar+KamLAND data (θ_{13} free)

Solar and KamLAND data also prefer θ_{13} ~0 (nontrivial consistency with SK+CHOOZ)

Bounds on $(\delta m^2, \theta_{12})$ not significantly altered for unconstrained θ_{13} "Grand Total" from global analysis of oscillation data

Marginalized $\Delta \chi^2$ curves for each parameter (2004)

Numerical $\pm 2\sigma$ ranges (95% CL for 1dof), 2004 data:

$$\begin{split} \delta m^2 &\simeq 8.0^{+0.8}_{-0.7} \times 10^{-5} \text{ eV}^2 \\ \Delta m^2 &\simeq 2.4^{+0.5}_{-0.6} \times 10^{-3} \text{ eV}^2 \\ \sin^2 \theta_{12} &\simeq 0.29^{+0.05}_{-0.04} \quad (\text{SNO '}05: \ 0.29 \to 0.31) \\ \sin^2 \theta_{23} &\simeq 0.45^{+0.18}_{-0.11} \\ \sin^2 \theta_{13} &< \sim 0.035 \end{split}$$
$$\begin{aligned} \text{sign}(\pm \Delta m^2): \text{ unknown} \\ \text{CP phase } \delta: \text{ unknown} \end{aligned}$$

Note: Precise values for θ_{12} and θ_{23} relevant for model building

Probing absolute ν masses through non-oscillation searches

Three main tools (m_{β} , $m_{\beta\beta}$, Σ):

 β decay: m²_i ≠ 0 can affect spectrum endpoint. Sensitive to the "effective electron neutrino mass":

$$m_{\beta} = \left[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2\right]^{\frac{1}{2}}$$

-1

2) Ov2β decay: Can occur if m²_i ≠ 0 and v=v. Sensitive to the "effective Majorana mass" (and phases):

$$m_{\beta\beta} = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$$

3) Cosmology: m²_i ≠ 0 can affect large scale structures in (standard) cosmology constrained by CMB+other data. Probes:

$$\Sigma = m_1 + m_2 + m_3$$

$$m_{v} = \begin{array}{c} 0 & 1 \\ 7 & 4 \\ eV \end{array}$$

Even without non-oscillation data, the $(m_{\beta}, m_{\beta\beta}, \Sigma)$ parameter space is constrained by previous oscillation results:

But we do have information from non-oscillation experiments:

- 1) β decay: no signal so far. Mainz & Troitsk expts: $m_{\beta} < O(eV)$
- 2) Ov2β decay, no signal in all experiment, except in the most sensitive one (Heidelberg-Moscow). Rather debated claim.
 Claim accepted: m_{ββ} in sub-eV range (with large uncertainties)
 Claim rejected: m_{ββ} < O(eV).
- Cosmology. Upper bounds:
 Σ < eV/sub-eV range, depending on several inputs and priors. E.g.,

0v2β decay: Heidelberg-Moscow experiment final analysis (March 2004)

Four lines at 2010, 2017, 2022, 2053 keV are identified as due to ²¹⁴Bi decay

One possible line at 2030 keV is not identified

Claimed Onbb line at ~2039 keV is now more clearly seen "by eye". Statistically, it emerges at about 4σ C.L. (~23 events)

We might have reached an "LSND-like" situation:

- Initial claim is rather controversial
- Then, further data/analysis strengthen it
- No current experiment can disprove it
- It will stay with us for a long time and will demand more sensitive expt. checks

$0v2\beta$ claim rejected

$0v2\beta$ claim accepted

 $0\nu 2\beta$ claim

10⁻¹

I.H.

N.H.

1

 10^{-1}

10⁻²

10

m _{BB}

(eV)

Cosmological bound dominates, but does not probe hierarchy yet

Tension with cosmological bound (no combination possible at face value) But: too early to draw definite conclusions

 Σ (eV)

 ν oscillation data +

 Σ (CMB+2dF+Ly α)

C.L. = 2σ

1

E.g., if $0v2\beta$ claim accepted & cosmological bounds relaxed:

Combination of all data (osc+nonosc.) possible

Complete overlap of the two hierarchies (degenerate spectrum with "large" masses)

High discovery potential in future ($m_{\beta}, m_{\beta\beta}, \Sigma$) searches

Beyond three-neutrino mixing: LSND

Many theoretical reasons to go beyond the standard 3v scenario A purely experimental reason: the puzzling LSND oscillation claim $\Delta M^2 \sim O(eV^2)$ with very small mixing?

Solutions invented so far (new sterile states, new interactions or properties) seem rather "ad hoc" and/or in poor agreement with world neutrino data

If MiniBoone confirms LSND this year (2005), many ideas will be revised, and neutrino schools > 2006 will really be fun! Great progress in recent years ...

...........

Conclusions

.

Neutrino mass & mixing: established fact Determination of $(\delta m^2, \theta_{12})$ and $(\Delta m^2, \theta_{23})$ Upper bounds on θ_{13} Oscillation-induced spectral distortions Direct evidence for solar v flavor change Evidence for matter effects in the Sun Upper bounds on v masses in (sub)eV range

Determination of θ_{13} Leptonic CP violation Absolute m_v from β -decay and cosmology Test of $0v2\beta$ claim and of Dirac/Majorana vMatter effects in the Earth Normal vs inverted hierarchy Beyond the standard 3v scenario Deeper theoretical understanding

... and great challenges for the future!