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 An almost up-to-date phenomenological
overview of the three-neutrino 

mass-mixing parameters
   (complete 2005 update + details in next lecture)
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                         Outline:

• Overview of 3ν mass-mixing parameters
• Constraints from ν oscillation searches
• Constraints from non-oscillation searches
• Combining oscill. & non-oscill. ν observables
• Beyond the standard 3ν scenario (LSND)
• Conclusions
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3ν mixing - brief recap
● Neutrinos fields mix:

● The standard rotation ordering of the CKM matrix for quarks happens
   to be useful also for neutrinos:

… but with very different angles - we shall see that:

● Only if s2
13≠0 one can hope to probe the CP-violating phase δ

  (“holy grail” of future ν oscillation experiments like nu-factories)
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Neutrino fields mix … and oscillate, with 
at least two frequencies. “Textbook” plots:

Super-K KamLAND

Δm2-driven oscillations δm2-driven oscillations

(about half-period seen in both cases)



3ν oscillations (remind also Lec. II, one-dominant-mass-scale approximation)

Two macroscopic oscillation lengths governed by δm2 and Δm2, 
with amplitudes governed by θij. Leading expt. sensitivities:

(Δm2, θ23, θ13) 

(δm2, θ12, θ13) 

(Δm2, θ13) 

Atmospheric ν,  K2K long baseline accelerator (a)

Solar ν,  KamLAND long baseline reactor ν (b) 

CHOOZ short-baseline reactor ν (a,b)

(a)   (ν1,ν2) difference weakly probed    
(b)   (νµ,ντ) difference not probed    
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Status of 3-neutrino framework:

(Δm2, θ23)         robust upper + lower bound  from atmospheric & accelerator data
(δm2 , θ12)        robust upper + lower bound from solar & reactor data 
VMSW = 0           L/E vacuum osc. pattern recently seen in atm. & react. data
VMSW ≠ 0          matter effects recently established in solar neutrinos
    θ13              upper bound from CHOOZ reactor data + above data
    µ                upper bound from laboratory (+ 1st lower bound?) & cosmology
Sign(Δm2)          unknown (is the hierarchy normal or inverted ?)
     δ                unknown (is there leptonic CP violation ?)
 φ2,φ3                   unknown (are there Majorana phases?)

Questions beyond the standard 3-neutrino framework:

dim(H)=3+NS ?     Light sterile neutrinos?
V=VMSW+ΔV  ?     New (subleading) interactions in medium? 
H ≠ H+            ?     Neutrino decay ?
idν/dx ≠ Hν  ?    Non-hamiltonian evolution (decoherence)?
...  
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3ν massmass2 2 spectrumspectrum and flavor content (ee  µµ  ττ)

+Δm2

δm2µ2 ν2
ν1

ν3

ν3

-Δm2

 Abs. scale   Normal hierarchy       Inverted hierarchy     mass2 splittings

Absolute mass scale µ unknown [but < O(eV)] 
Hierarchy [sign(∆m2)] unknown
νe content of ν3 unknown [but < few%] 

(“solar” splitting)
(“atmospheric” splitting) 
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Constraints on (Δm2, θ23, θ13) 
  from SK + K2K + CHOOZ
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Super-
Kamiokande

νe induced events: ~ as expected
νµ  induced events: deficit from below
 

Channel νµ→νe? No (or subdominant)
Channel νµ→ντ? Yes  (dominant)
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 Atmospheric neutrinos: Super-Kamiokande
SGe 
MGe 
SGµ
MGµ
USµ
UTµ

Sub-GeV electrons 
Multi-GeV electrons 
Sub-GeV muons
Multi-GeV muons
Upward Stopping muons
Upward Through-going muons

electrons ~OK

no osc.

 ▲             ▼
up           down muon deficit from below
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Super-Kamiokande atmospheric ν 

For θ13~0 and δm2~0, a very simple formula fits all SK data (+ MACRO & Soudan2)

1st oscillation dip still visible
despite large L & E smearing

Strong constraints on the 
   parameters (Δm2, θ23)
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First-generation LBL accelerator experiment: KEK-to-Kamioka (K2K)

Aimed at testing disappearance of 
accelerator νµ in the same range 

probed by atmospheric ν:

(L/E)K2K~(250 km/1.3 GeV)~(L/E)ATM 

2002: muon disappearance
observed at >99% C.L.

 No electron appearance.
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 Atmospheric ν oscillation evidence robust & confirmed with lab-ν in K2K
 Many interesting details depend on theoretical input & subleading effects

Contours at 1, 2, 3σ (1 dof). Note linear scale for Δm2 and sin2θ23, with 2nd octant of θ23 unfolded 
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       … more about subleading effects (induced by “solar parameters”)
   vs systematic errors

     in the Super-Kamiokande zenith distributions 



The CHOOZ reactor experiment and θ13 

● Searched for disappearance of reactor νe  
    (E~few MeV) at distance L=1 km 

●  L/E range comparable to atmospheric ν
    → probe the same Δm2

●  No disappearance signal was found (1998)
    → Exclusion plot in (Δm2, θ13) plane

●  Results also confirmed by later reactor
    experiment (Palo Verde)
     
 

A crucial and beautiful “small-scale” experiment
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The CHOOZ reactor experiment and θ13 
CHOOZ exclusion plot

Δm2

(eV2)

sin2(2θ13)

● For any value of Δm2 in the SK+K2K 
   range, get stringent upper bound on θ13  

 

Feverish world-wide activity to make
one –or more- new reactor experiment
with higher θ13 sensitivity (=smaller error)
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At the Δm2 scale of SK+K2K, nonobservation of νe→νe  in the 
CHOOZ reactor experiment sets upper bounds  sin2θ13 < few %

Δ

SK+K2K+CHOOZ

Growing literature & interest in subleading effects due to θ13, δm2, sign(Δm2), δ  
But need very significant error reduction to probe them 

A challenge for future high-statistics experiments  
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Missing piece in puzzle:
    ντ appearance 
(only 2-sigma hint in Super-K) 

Will be studied at
Laboratori Nazionali

del Gran Sasso
(OPERA, ICARUS)

with 
CERN neutrino beam 
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Constraints on (δm2, θ12, θ13) 
  from solar ν + KamLAND

19



The Sun seen with neutrinos (SK)

Earth orbit from solar ν (SK)

Solar neutrinos (νe)
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Standard Solar Model:
neutrino energy spectrum…
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… and experimental
    deficit



Reminder - Solar νe→νe,µ,τ vs atmospheric νµ→ντ : matter (MSW) effect

Atmospheric νµ and ντ feel background
fermions in the same way (through NC);
no relative phase change (~ vacuum-like)

But νe , in addition to NC, have CC interac.
with background electrons (density Ne).
Energy difference:   V = √2 GF Ne

Solar ν analysis must account for MSW effects in the Sun and in the Earth
    (Earth matter effects negligible for KamLAND reactor neutrinos)
Solar+KamLAND combination provide evidence for Vsun (not yet for Vearth)

νµ,τ νµ,τ

fermion

Z

W

νe νe

e e
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Reminder - Solar neutrinos: Oscillation analysis

● Leading parameters: (δm2, θ12)

● MSW effects must be carefully taken into account

   → need electron density profile
      in the Sun (always) …

   … and in the Earth 
(for night-time trajectories)
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Dramatic reduction of the 
(δm2,θ12) param. space in 
         2001-2003
(note change of scales)

        Cl+Ga+SK (2001)
 

       +SNO-I (2001-2002)

       +KamLAND-I (2002)

       +SNO-II (2003)

Direct proof of solar νe→νµ,τ
in SNO through comparison of

(+ confirmation of solar model)
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Solar neutrinos: The 1st SNO breakthrough (2002)

● Solar neutrino deficit in Cl, Ga, Č expt.: model-independent proof desirable

●  Proof provided beyond any doubt by CC/NC event ratio in SNO:

●  R~1/3 was found → solar νe must oscillate into νµτ
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Solar neutrinos: Oscillation analysis (as of summer 2002)

All experiments 
combined (summer ’02)

(90, 95, 99, 99.73% C.L.)

M
ax

  m
ix

in
g

LMA
(best fit)

LOW

QVO

VACJargon:
LMA    Large Mixing Angle
LOW   Low δm2

QVO    Quasi-vacuum oscillations
VAC    Vacuum oscillations
(SMA   Small mixing angle, †2001)
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Man-made reactor neutrinos: KamLAND

● Average distance: ~180 km (two orders of magnitude greater than CHOOZ)

● CHOOZ was mainly sensitive to Δm2 ~ few x 10-3 eV2

● KamLAND is mainly sensitive to δm2 ~ few x 10-5 eV2 (LMA range!)

● KamLAND also opens fundamental new field of geoneutrino physics

E > 2.6 MeV
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KamLAND breakthrough (December 2002)

LMA: 
 δm2 = 5.5x10-5 eV2

 sin2 2Q12 = 0.833

Disappearance of reactor νe measured

LMA solution confirmed; all others ruled out
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KamLAND impact on (δm2, θ12) parameter space

…before KamLAND         KamLAND 2002 …after KamLAND

Note: 
Maximal θ12 mixing 
not ruled out in 2002
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Why should we care about (non)maximal θ12

In LMA, SNO CC/NC can be <0.5 only WITH matter effects AND mixing <π/4

With 
MSW effects

Without MSW
effects
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The 2nd SNO  breakthrough (September 2003): maximal mixing ruled out

Compelling evidence for matter effects in the Sun

With 
MSW effects

Without MSW
effects

31



LMA analysis (as of september 2003)

                                                       Still: LMA-I vs LMA-II ambiguity

Before SNO 2003 After SNO 2003
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… in 2004 (KamLAND-II with revised background):
   unique Large Mixing Angle solution, and change to linear scales…

+ evidence for oscillatory effects
in KamLAND reactor L/E spectrum

What about MSW effects? 
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Exercise: (1) Change MSW potential “by hand,” V →aMSWV
               (2) Reanalyze all data with (δm2,θ12,aMSW) free
               (3) Project (δm2,θ12) away and check if aMSW~1

(… a way of “measuring”
     GF through solar 
neutrino oscillations …)

Results: with 2004 data, aMSW~1 confirmed within factor of ~2
and aMSW~0 excluded → Evidence for standard MSW effects in the Sun

                    But: expected subleading effect in the Earth (day-night
                        difference) still below experimental uncertainties.
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2005 (March): new data + detailed analysis from SNO 
δ

δ

2004 2005

Solar

Solar+KL

Previous results
basically confirmed

Slightly higher ratio
CC/NC ~ P(νe→νe)

Slight shift (<1σ upwards)
of allowed range for θ12
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3ν analysis of 2004 solar+KamLAND data (θ13 free)

Solar and KamLAND data
also prefer θ13~0 (nontrivial
consistency with SK+CHOOZ)

Bounds on (δm2,θ12) not
significantly altered for
unconstrained θ13
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      “Grand Total” from global 
      analysis of oscillation data
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Marginalized Δχ2 curves for each parameter (2004) 
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Numerical ±2σ ranges (95% CL for 1dof), 2004 data:
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Note: Precise values for θ12 and θ23 relevant for model building



       Probing absolute ν masses
   through non-oscillation searches
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Three main tools (mβ, mββ, Σ):

1) β decay: m2
i ≠ 0 can affect spectrum endpoint. Sensitive to 

      the “effective electron neutrino mass”:

2)   0ν2β decay: Can occur if  m2
i ≠ 0  and ν=ν. Sensitive to the 

      “effective Majorana mass” (and phases):

3)  Cosmology: m2
i ≠ 0 can affect large scale structures in (standard)

      cosmology constrained by CMB+other data. Probes:
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mν =  0   1
          7   4
eV

Ma ’96
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 Even without non-oscillation data, the (mβ, mββ, Σ) parameter
 space is constrained by previous oscillation results:

Significant covariances

Partial overlap between
the two hierarchies

Large mββ spread due to
unknown Majorana phases

43



But we do have information from non-oscillation experiments:

1) β decay: no signal so far. Mainz & Troitsk expts: mβ < O(eV) 

2) 0ν2β decay, no signal in all experiment, except in the most 
      sensitive one (Heidelberg-Moscow). Rather debated claim.
      Claim accepted: mββ in sub-eV range (with large uncertainties) 
    Claim rejected:  mββ < O(eV).

3) Cosmology. Upper bounds: 
     Σ < eV/sub-eV range, 
      depending on several 
      inputs and priors. E.g.,
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Four lines at 2010, 2017, 2022, 2053 keV
are identified as due to 214Bi decay

One possible line at 2030 keV is not identified

0ν2β decay: Heidelberg-Moscow experiment final analysis (March 2004)

Claimed 0nbb line at ~2039 keV is now
more clearly seen “by eye”. Statistically,
it emerges at about 4σ C.L. (~23 events)

We might have reached an “LSND-like” situation:

- Initial claim is rather controversial
- Then, further data/analysis strengthen it
- No current experiment can disprove it
- It will stay with us for a long time and
   will demand more sensitive expt. checks
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0ν2β claim rejected 0ν2β claim accepted

Cosmological bound dominates, but 
   does not probe hierarchy yet  

        Tension with cosmological bound 
   (no combination possible at face value)
But: too early to draw definite conclusions 
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E.g., if 0ν2β claim accepted & cosmological bounds relaxed:

Combination of all data
(osc+nonosc.) possible

Complete overlap of
the two hierarchies
(degenerate spectrum
with “large” masses)

High discovery potential 
in future (mβ, mββ, Σ) 
searches   
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Beyond three-neutrino mixing: LSND

Many theoretical reasons to go beyond the standard 3ν scenario
A purely experimental reason: the puzzling LSND oscillation claim 
ΔM2~O(eV2) with very small mixing?

Solutions invented so far
(new sterile states, new
interactions or properties)
seem rather “ad hoc”
and/or in poor agreement
with world neutrino data

If MiniBoone confirms
LSND this year (2005),
many ideas will be revised,
and neutrino schools > 2006
will really be fun!
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Conclusions
Neutrino mass & mixing: established fact
Determination of (δm2,θ12) and (Δm2,θ23)   
Upper bounds on θ13  
Oscillation-induced spectral distortions
Direct evidence for solar ν flavor change
Evidence for matter effects in the Sun
Upper bounds on ν masses in (sub)eV range
…………

Determination of θ13
Leptonic CP violation
Absolute mν from β-decay and cosmology
Test of 0ν2β claim and of Dirac/Majorana ν
Matter effects in the Earth
Normal vs inverted hierarchy
Beyond the standard 3ν scenario
Deeper theoretical understanding 
…………

  Great 
progress
in recent 
  years …

… and great
  challenges
    for the
    future!


