

Schematic view of different zenith angles of atmospheric neutrinos and distances they travel before detection

Atmospheric neutrinos

Bartol and Honda fluxes

Zenith angle distribution(1D)

Calculated zenith angle distribution

Up/Down asymmetry for neutrino oscillations!

30 September 2003

3D neutrino flux calculation

Till few years ago the flux calculation was based on the so called 1D model. Now 3D model is available, although still under development

3D neutrino flux calculation

3D calculation by G.Battistoni et al. (hep-ph/9907408)

A bit of history

- ✓ In the '70 the most important problem in particle physics was the proton decay detection
- ✓ In this search the atmospheric neutrino interactions constituted the most tricky background: this is the reason why the study of atmospheric neutrinos started!
- The atmospheric neutrinos remained a "simple background" till when an anomalous results was obtained with Cerenkov detectors (Kamiokande, IMB) and lately confirmed with calorimeters (Soudan2)

$$\mathbf{R} = \frac{(\nu_{\mu}/\nu_{e})_{\text{measured}}}{(\nu_{\mu}/\nu_{e})_{\text{predicted}}} < 1 \dots$$

Since then atmospheric neutrinos became the "high-way" towards new physics beyond the Standard Model

30 September 2003

Detection of atmospheric neutrinos

 v_{μ} + Nucleon $\rightarrow \underline{\mu}$ + hadrons: presence of a long, minimum ionizing track (the μ) v_{e} + n \rightarrow e⁻ + p, v_{e} + p \rightarrow e⁺ + n : presence of an electromagnetic shower (v_{e} interactions with multiple hadron production is difficult to separate from neutral current events for atmospheric v_{e} only quasi-elastic interactions can be studied)

Particle identification in a water Cerenkov counter

muon track:

dE/dx consistent with minimum ionization sharp edges of Cerenkov light ring

electron shower:

high dE/dx "fuzzy" edges of Cerenkov light ring (from shower angular spread)

Measure electron/muon separation by exposing a 1000 ton water Cerenkov counter (a small Super-K detector) to electron and muon beams from accelerators. Probability of wrong identification $\sim 2\%$

Super-Kamiokande

- ✓ Introduction
- ✓ Contained events and upward muons
- ✓ Updated results
 - Oscillation analysis with the full SK-I statistics
 - Multi-ring events
 - π^0/μ ratio
 - Search for τ leptons
 - $\nu_{\mu} \rightarrow \nu_{s}$
- ✓ Conclusion

Super-Kamiokande detector

50,000 ton water Cherenkov detector
1000m underground (2700 m.w.e.)
11,146 20-inch PMTs for inner detector
1,885 8-inch PMTs for outer detector

30 September 2003

Pasquale Migliozzi - INFN Napoli

(22.5 kton fiducial volume)

Contained event analysis

Fully Contained (FC)

No hit in Outer Detector

Partially Contained (PC)

One cluster in Outer Detector

Fiducial volume (>2m from wall, 22 ktons) E_{vis}>30 MeV (FC), >3000 p.e.(~350 MeV) (PC)

Final sample: FC: 8.2 ev./day, PC: 0.58 ev./day

E_{vis} < 1.33 GeV : Sub-GeV E_{vis} > 1.33 GeV : Multi-GeV

30 September 2003

Sub-GeV (Fully Contained)		Multi-GeV	
$\frac{E_{vis} < 1.33 \ \mathrm{GeV}}{P_e > 100 \ \mathrm{MeV}/c}$	c, P _μ > 200 MeV/c	Fully Contained	(E _{vis} > 1.33 GeV)
1ring e-like	Data MC(Honda) 3266 3081.0 3101 4702.0	1ring <u>e-like</u> µ-like	772 707.8 664 968.2
<u>µ-шке</u> Multi ring (µ-like)	2457 2985.6 (225) (333.9)	- Multi ring (µ-like) Totol	1532 1903.5 (457) (719.3)
Total	8904 10770.5	- Total Partially Contain	ed (assigned as µ-like)
$\frac{(e)_{\text{Data}}}{(e)_{\text{MC}}} = 0.$	$638 \pm 0.016 \pm 0.05$	Total	913 1230.0 +0.030

Zenith angle distribution

Multi-ring event analysis

The zenith angle distortion is consistent with single-ring analysis.

30 September 2003

Zenith angle distributions of upward-going muons

Allowed region (FC + PC + UP-thru + UP-stop) ∆m² (eV²) 10 -1 $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations Best fit(∆m²=2.5x10⁻³,sin²20=1.0 10 χ^2_{min} =163.2/170 d.o.f) No oscillation $(\chi^2 = 456.5/172 \text{ d.o.f})$ 10

sin²2

FC+PC+UPMU combined

Upgoing stop µ/Upgoing through µ

Upgoing through μ

FC+PC

10

∆m² = (1.5~4.0)x10⁻³eV² sin²2θ > 0.92 @ 90%CL

τ appearance with atmospheric v

τ detection in atmospheric ν

30 September 2003

τ appearance analysis

N^{FC}_τ= αN^τ_{MC}/(eff.=0.44)
 =145+-44(stat.)
 +11/-16(sys.)
 N_{exp}=86

■ <u>consistent with $v_{\mu} \leftrightarrow v_{\tau}$ </u>

Allowed region for active 3flavor oscillations

consistent with CHOOZ's excluded region

$$v_{\mu} \rightarrow v_{\text{sterile}} (\pi^{0} \text{ method})$$

30 September 2003

π^0 info from K2K-1kt

30 September 2003

$$\nu_{\mu} \rightarrow \nu_{sterile}$$
 (matter in earth)

Using matter effect and enriched NC sample $v_{\mu} \rightarrow v_{\tau}$: No matter effect $v_{\mu} \rightarrow v_{s}$: With matter effect

Neutrino oscillation in matter

$$\begin{pmatrix} \mathbf{n}_{m} \\ \mathbf{n}_{t} \end{pmatrix} = \begin{pmatrix} \cos \mathbf{J}_{m} & \sin \mathbf{J}_{m} \\ -\sin \mathbf{J}_{m} & \cos \mathbf{J}_{m} \end{pmatrix} \begin{pmatrix} \mathbf{n}_{1} \\ \mathbf{n}_{2} \end{pmatrix}$$
$$\sin^{2} 2\mathbf{J}_{m} = \frac{\sin^{2} 2\mathbf{J}}{(\mathbf{z} - \cos 2\mathbf{J})^{2} + \sin^{2} 2\mathbf{J}}$$
$$\mathbf{z} = \frac{2\sqrt{G_{F}}n_{n}E_{n}}{\Delta m^{2}}$$

30 September 2003

Pasquale Migliozzi - INFN Napoli

27

$$\nu_{\mu} \rightarrow \nu_{\text{sterile}}$$
 (matter in earth)

For
$$\sin^2 2\theta = -1$$

and for $E_v = 30 - 100 \text{ GeV}$
 $\sin^2 2\theta_m - 1/(\zeta^2 + 1) \longrightarrow \zeta \gg 1 \text{ and}$
 $\sin^2 2\theta_m <<1$
Suppression !

Strategy:

Obtain allowed region using lower energy events (Fully contained sample) ⇒Test zenith angle of NC enriched events, high energy PC and throughgoing muon events.

Limit on $v_{\mu} \rightarrow v_s$ add mixture

30 September 2003

Soudan-2 & MACRO

Conclusions on atmospheric neutrinos

✓ Oscillation parameters for $\nu_{\mu} \rightarrow \nu_{\tau}$: $\Delta m^2 = 1.5 \sim 4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta > 0.92$ (90%CL) ✓ Excess from τ leptons ~ 1σ ✓ $\nu_{\mu} \rightarrow \nu_s$ is strongly disfavored ✓ π^0/μ ratio is consistent with $\nu_{\mu} \rightarrow \nu_{\tau}$

Far Detector

Close Detectors (CD)

SUPERKAMIOKANDE INSTITUTE FOR CORMO RAY RESEARCH UNIVERSITY OF TOXYO

Sensitivity of the experiment

Sensitive to Δm^2 above 2x10⁻³ eV²!

The neutrino beam

The neutrino beam

K2K-I close detector

MRD consists

✓ Drift tubes +

- 12 layers of Fe
- (10cm x4 + 20cm x8)
- ✓ Fiducial mass 312 ton
- ✓ 200k nevts/2.1x10¹⁹pot

30 September 2003

- Good vertex resolution
- ✓ Good angular resolution
- Good momentum resolution for high energy muons

Aim

- \checkmark Measure v energy
- Measure v profile Pasquale Migliozzi INFN Napoli

 Similar systematics as Super-Kamiokande

Aim

- ✓ Measure v rate
- \checkmark Measure π^0 production

30 September 2003

- Increased acceptance at low energy
 - Important for the oscillation analysis
- Increased acceptance at large angle

30 September 2003

Profile and spectrum stability monitored with the MRD

Stability of the profile

Stability of the spectrum

vinteraction @ different locations

Event selection at SK

Using GPS timing

$$\Delta T \equiv T_{SK} - T_{KEK} - TOF$$

require

 $-0.2 < \Delta T < 1.3$ ms

56 evts fully contained in the fiducial volume have been observed

 $10^{\text{-3}}$ background events up to now mainly from atmospheric ν events

30 September 2003

Trigger similar to the one used for atmospheric neutrino induced events

Expected $\#\nu$ evts at SK (2)

The 1kton water Cerenkov detector is used as reference CD detector

- ✓ same neutrino interaction target
 - (cross section uncertainty cancels out)
- ✓ same detection energy threshold
- \checkmark same event reconstruction scheme
- ⇒ small systematic error

The MRD and Scifi/Water detectors are used to check the consistency of the 1kton detector results

Expected $\#\nu$ evts at SK (3)

Beam-associated events in Super-K June 1999 – July 2001 (4.8x10¹⁹ protons on target) FCFV events, $E_{vis} > 30$ MeV: Expected ($P_{osc} = 0$): $80.1^{+6.2}_{-5.4}$ events Observed: 56 events (probability of a statistical fluctuation ~3% if $P_{osc} = 0$)

Nov 1999 – July 2001 (stable beam conditions)

Main source of sys. Error
✓ Sys. error from 1kton meas.
(mainly due to fid. vol.) 5%
✓ Sys. error from SK meas. 3%
✓ Sys. Error from extrapolation
✓ Far/Close 7%
✓ Statistical error 1%

30 September 2003

Null Oscillation Probability

Null Oscillation Probability

	analysis-1	analysis-2
N _{sk} only	1.3%	0.7%
Shape only	15.7%	14.3%
N _{sk} +Shape	0.7%	0.4%

Best fit $(\sin^2 2\theta, \Delta m^2)$

Both Shape and N_{SK} +Shape indicate consistent parameter region

Both indicate consistent Δm^2 region

I mpact of atmospheric and K2K neutrinos

 $\begin{cases} \Delta m^{2} \\ e_{23} \end{cases} \text{ can be basically taken from the 2v analysis of } \begin{cases} \mathsf{SK} \\ data \\ \mathsf{K2K} \end{cases} \text{ since they are not significantly perturbed by 3v effects induced by } \text{ small } \theta_{13} \text{ or } \delta m^{2} / \Delta m^{2} \text{ (at least within the current picture).} \end{cases}$

this also implies no real sensitivity to sign(Δm^2) or δ

However this is not the end of the story!

A new analysis of the available SK data has been recently presented

30 September 2003

Atmospheric v oscillation analysis updates

- New neutrino flux (Honda 2001) Updated primary cosmic ray flux (Based on new precise measurements.),
 - 3d calculation has been done.
 (In the previous calculation, direction of v was assumed to be as same as the primary particle.)

New improved hadron interaction model

Summary of the atmospheric v events 1.contained events

(complete SK-I dataset)

Allowed region of the oscillation parameters from atmospheric v data

(complete SK-I dataset)

Atmospheric v zenith angle distribution

Comparison between old and new results from atmospheric v data

