Future experiments aiming at the measurement of the PMNS matrix elements

What still we have to measure?

• Three angles $(\theta_{12}, \theta_{13}, \theta_{23})$

<u>Two mass differences (δm^2 , Δm^2)</u>

Discovery Precision meas.

- The sign of the mass difference $\Delta m^2 (\pm \Delta m^2)$
- One CP phase (δ)
- <u>The source of atmospheric oscillations</u> (detect τ appearance)
- Are there more sterile neutrinos?
- The absolute masse scale
- Are neutrino Dirac or Majorana particles (or both)?

All the underlined items can be studied with LBL experiments

(Super) Neutrino Beams

	<ev> (GeV)</ev>	L (km)	#CC ∨ /kt/yr	L/L _{osci} *	f(v _e) @peak
K2K	1.3	250	2	0.47	~1%
NuMi (High E)	15	730	3100	0.12	0.6%
NuMi (Low E)	3.5	730	469	0.51	1.2%
CNGS	17.7	732	2448	0.10	0.8%
JHF-I	0.7	295	133	1.02	0.2%
Numi off-axis	2.0	730	~80	0.89	0.5%
Super AGS	1.5	2540	11	4.1	0.5%
JHF-II	0.7	295	691	1.02	0.2%
SPL	0.26	130	16.3	1.21	0.4%
β beam **	0.58	130	84	0.54	

The ultimate neutrino beam: The Neutrino Factory

8

Goals of 1st generation of Long Baseline Experiments

- Confront emerging picture with precision data
 - confirm deficit of ν_{μ} in accelerator-based experiment
 - confirm oscillation hypothesis:
 - must measure/know E & L precisely to see oscillations in L/E
 - pin down oscillation parameters (with 10% precision)
 - demonstrate $\nu_{\mu} \rightarrow \nu_{\tau}$ is dominant mode:
 - Tau appearance ! (CNGS \rightarrow direct, MINOS \rightarrow NC/CC)
- Look for new phenomena
 - evidence for non-zero $\theta_{13} \rightarrow \text{detection}$ of ν_e appearance
 - test for possible CPT violation?
 - etc. etc.

MINOS Far Detector

- 8m octagonal tracking calorimeter
- 486 layers of 2.54 cm Fe
- Two Supermodules (15m each)
- 1000 km of scintillator, 2000 km of WLS and clear fiber readout (25,800 m² of active detector planes)
- Toroidal ≈ 1.3T. Total mass 5.4 kT
- hadron energy : $\frac{\Delta E}{E} \approx \frac{55\%}{\sqrt{E}}$
- muon momentum : $\frac{\Delta p}{p} \approx 12\%$ (by curvature)

O FERMILAB #98-765D

The NuMi beam

- Low energy beam: less flux, but better match to Δm^2
- Still plenty of events: ~ 5000 ν_{μ} CC events in 2 yrs

Expected Neutrino Energy Distributions in 2 years

Appearance of electrons

Observed number of events identified as coming from v_e CC interactions with and without oscillations. $25x10^{20}$ protons on target.

Pasquale Migliozzi - INFN Napoli

 3σ discovery potential for three different levels of protons on target and versus systematic uncertainty on the background.

Appearance of electrons

90% CL Exclusion

3 σ Contours

• MINOS sensitivities based on varying numbers of protons on target

Summary of MINOS

Data-taking with NuMI beam will begin early 2005

- Far & Near detector on schedule, Far det. already ½ complete (detector very stable: < 1 ns timing drifts, ~ 1% pulse height drifts)
- Calibration detector running & data analysis will be complete
- much progress on NuMI: civil & technical components
- By 2007, they will provide a precise measurements
 - oscillation parameters: $\nu_{\mu} \rightarrow \nu_{\tau}$ case; (NC/CC ratio for mode id)
 - search for subdominant $\nu_{\mu} \rightarrow \nu_{e}$ (discussed later)
- Also ~ 24 kiloton-year exposure to atm. ν's
 - energy, direction resolution \rightarrow competitive on $\nu_{\mu} \rightarrow \nu_{\tau}$
 - 1st direct search for CPT non-cons. ($\nu_{\mu} \rightarrow \nu_{\mu} \text{ vs } \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$)

The CNGS neutrino beam

CERN to Gran Sasso Neutrino Beam

CNGS beam layout at CERN site.

Progress in the civil engineering work: excavation completed concreting started

CNGS commissioning: May 2006

The CNGS and the expected number of events

Nominal v beam (Nov. 2000)Expected interactions in
1kton detectorShared SPS operation1kton detector200 days/year \sim 18000 n_m NC+CC4.5x10¹⁹ pot / year \sim 80 n_t CCAverage v_{μ} energy 17 GeV \sim 80 n_t CC5 year runat $\Delta m^2 = 2.5x10^{-3} eV^2$ and full mixing

An updated CNGS with a flux 1.5 more intense than the one approved in 2000 is now considered as the baseline option

Limiting factor for θ_{13} search: ν_{e} + anti- ν_{e} beam contamination ~0.87%

$v_{\mu} \rightarrow v_{\tau}$ oscillations

- Analysis of the electron sample
 - $\checkmark~$ Exploit the small intrinsic ν_{e} contamination of the beam (0.8% of ν_{μ} CC)
 - \checkmark Exploit the unique e/p⁰ separation

At $\Delta m^2 = 3.5 \times 10^{-3} \text{ eV}^2 165 \quad \tau \rightarrow \text{e events are expected}$

Main background from charged current interactions of ν_e in the beam 700 events are expected

Statistical excess visible before cuts \Rightarrow this is the main reason for performing this experiment at long baseline ! Pasquale Migliozzi - INFN Napoli

$\tau \rightarrow e \text{ search}$: 3D likelihood

A simple analysis approach: a likelihood method based on 3 variables

5 T600 modules, 5 years CNGS (4.5 x 10¹⁹ p.o.t./year) Events/12 kton x year 3 variables 35 • v_a CC + v_a CC $E_{visible}$, P_{T}^{miss} , $\rho_{I} \equiv P_{T}^{lep} / (P_{T}^{lep} + P_{T}^{had} + P_{T}^{miss})$ Vertex cuts 30 F Exploit correlation between applied 25 them L_{s} ([$E_{visible}$, P_{T}^{miss} , ρ_{I}]) (signal) 20 L_{B} ([$E_{visible}$, P_{T}^{miss} , ρ_{I}]) (v_{e} CC back) 15 10 Discrimination given by 5 Overflow **Inl** $^{\mathbf{O}}L([E_{visible}, \mathbf{P}_{T}^{miss}, \mathbf{r}_{I}]) = L_{s} / L_{B}$ -2 0 8 2

Pasquale Migliozzi - INFN Napoli

10

ln

$\nu_{\mu} \rightarrow \nu_{\tau}$ appearance search summary

- T3000 detector (2.35 kton active, 1.5 kton fiducial)
- Integrated pots = 2.25 x10²⁰

	Signal	Signal	Signal	Signal	
τ decay mode	$\Delta m^2 =$	$\Delta m^2 =$	$\Delta m^2 =$	$\Delta m^2 =$	BG
	$1.6 imes 10^{-3}~{ m eV^2}$	$2.5 \times 10^{-3} \text{ eV}^2$	$3.0 imes10^{-3}~{ m eV^2}$	$4.0 imes 10^{-3} \ \mathrm{eV^2}$	
$\tau \to c$	3.7	9	13	23	0.7
$\tau \to \rho \text{ DIS}$	0.6	1.5	2.2	3.9	< 0.1
$\tau \to \rho \ \text{QE}$	0.6	1.4	2.0	3.6	< 0.1
Total	4.9	11.9	17.2	30.5	0.7

Super-Kamiokande: $1.6 < \Delta m^2 < 4.0$ at 90% C.L.

(these numbers have to be multiplied by a factor 1.5)

- Several decay channels are exploited (golden channel = electron)
- (Low) backgrounds measured in situ (control samples)
- High sensitivity to signal, and oscillation parameters determination

The Emulsion Cloud Chamber (ECC)

→ mass

1 mm

Pb

Emulsion layers

track segments

- <u>Emulsions</u> for tracking, <u>passive material</u> astarget
 - \rightarrow < **m** space res.
 - Established technique
 - charmed "X-particle" first observed in cosmic rays (1971)
 - DONUT/FNAL beam-dump experiment: 7 ν_{τ} observed (2000)

$\mathbf{D}\mathbf{m}^2 = \mathbf{O} (\mathbf{10^{-3} eV^2}) \quad \textcircled{R} \quad \mathbf{M}_{\text{target}} \sim 2 \text{ kton}$

modular structure ("bricks"): basic performance is preserved large detector \rightarrow sensitivity, complexity required: "industrial" emulsions, fast automatic scanning

Experience with emulsions and/or ν_{τ} searches : E531, CHORUS, NOMAD and DONUT

Event reconstruction with an ECC

- High precision tracking ($\delta x < 1\mu m$; $\delta \theta < 1mrad$)
 - Kink decay topology
 - Electron and γ/π^0 identification
- Energy measurement
 - Multiple Coulomb Scattering
 - Track counting (calorimetric measurement)
- Ionization (dE/dx meas.)
 - π/μ separation
 - e/π^0 separation

Topological and kinematical analysis event by event

14

12

10

10.0

80E-D2

Cell structure; exploited τ decay channels and topologies

Backgrounds for the $\nu_{\mu} \rightarrow \nu_{\tau}$ search

- Charm production
 - Cross-section and charmed fractions based on neutrino data
- Large angle μ scattering
 - Rate of $\boldsymbol{\mu}$ scattering off lead estimated by using
 - MC simulation including nuclear form factors (cross-checked with NOMAD data)
 - data from 7.3 GeV/c $\,\mu$ scattering off copper
 - µ scanned in the CHORUS emulsions
 - Scattering off lead of μ (p= 6-10 GeV/c) experimentally studied by the Collaboration. Results in agreement with expectations
- Hadron reinteractions with kink topology
 - the present estimate is based on a FLUKA simulation
 - consistent with preliminary results from dedicated experiments

Expected number of events

full mixing; 5 years run @ 4.5x10¹⁹ pot / year

	signal (Δm ² = 1.8 x 10 ⁻³ eV ²)	signal (Δm ² = 2.5 x 10 ⁻³ eV ²)	signal (Δm ² = 4.0 x 10 ⁻³ eV ²)	Back
Final Design CNGSx1.5 *)	9.0	17.2	43.8	1.06
With possible improvements	10.3	19.8	50.4	0.67

Aim at the evidence of v_{τ} appearance after a few years of data taking

*) An updated CNGS with a flux 1.5 more intense than the one approved in 1999 is now considered as the baseline option

Probability of $\geq n\sigma$ significance for different Δm^2

∆m²(eV²)	3 years (20.3x 10 ¹⁹ pot)		5 years (33.8x 10 ¹⁹ pot)	
	P _{3σ} (%)	$P_{4\sigma}$	P _{3σ} (%)	$P_{4\sigma}$
1.8x 10 ⁻³	77.2(91.1)	46.8(68.2)	97.2(99.5)	87.4(96.2)
2.2x 10 ⁻³	94.9(98.9)	80.5(93.0)	99.9(100)	99.0(99.9)
2.5x 10 ⁻³	98.9(99.9)	93.9(98.6)	199(100)	99.9(100)
3.0x 10 ⁻³	100(100)	99.6(100)	100(100)	100(100)
4.0x 10 ⁻³	100(100)	100(100)	100(100)	100(100)

Best fit of SK + K2K is $\Delta m^2 = (2.6\pm0.4) \text{ eV}^2$ Fogli et al. hep-ph/0303064 The number in parenthesis are obtained assuming possible improvements Pasquale Migliozzi - INFN Napoli

 $\nu_{\mu} \rightarrow \nu_{e}$ search with OPERA (interesting by product) A similar analysis can also be performed with the ICARUS detector

Backgrounds for the $\nu_{\mu} \rightarrow \nu_{e}$ search

- > π^0 identified as electrons produced in $v_\mu NC$ and $v_\mu CC$ with the μ not identified
- > v_e beam contamination (main background)
- > $\tau \rightarrow e \text{ from } \nu_{\mu} \rightarrow \nu_{\tau} \text{ oscillations (strongly reduced thanks to the capability in detecting decay topologies)}$

In the following we assume a three family mixing scenario with $\theta_{23} = 45^{\circ}$

OPERA sensitivity to θ_{13}

Summary of the CNGS project

 Construction of CNGS is well underway. The tunnel excavation is complete. The remaining construction work is on schedule (Beam starts by mid 2006)

The ICARUS and OPERA experiments will permit

- An unambiguous direct evidence of τ appearance in a ν_{μ} beam
- A measurement of Δm^2 at 10-20%
- Extend sensitivity for small $\nu_{\mu} {\rightarrow} \nu_{e}$ mixings (competitive with other experiments)
- The construction of the detectors is in progress and it is planned to be completed by mid 2006

Goals of 2nd generation of Long Baseline Experiments

- Precision measurement of PMNS matrix elements
 - $sin^2 2\theta_{23}$ with 1% accuracy
 - Δm^2 with few% accuracy
- Discovery (if not done by 1^{st} generation experiments) and measure non-zero θ_{13}
 - They could give the 1st evidence of 3-flavor mixing
 - In case of non-zero θ_{13} precision measurement
 - 1st step to CP measurement
 - NB If θ_{13} < 1° impossible to assess CP violation in the leptonic sector. The other condition to make CP in the leptonic sector detectable has been fulfilled by KamLAND (LMA solution)

Conventional superbeams

- Exploit extremely intense proton sources to produce beam from π-decay
- Intermediate step to neutrino factory
 - π beam necessary for μ beam
- Sensitivity intermediate between near-term experiments and neutrino factory
- Cost also intermediate
- Technical hill less steep to climb
 - Proton drivers essentially designed (or existing)
 - Radiation damage near target station may be important

Possible Future Proton Drivers

Source	Place	Proton Energy (GeV)	Power (MW)	ESS U U U U U U U U U U U U U U U U U U U
Upgr. Booster	FNAL	16	1?	10 ² TRIUMF
Upgr. NUMI	FNAL	120	1.6	10 AGS CERN PS Minos
50 GeV PS	JHF	50	0.77 (→4)	10 ⁻¹ Evatron
SPL	CERN	2.2	4	10^{-2}

Plan to start in 2008-9

E_v reconstruction in water Cerenkov

- Muon monitors @ ~140m
 - Spill-by-spill monitoring of beam direction
- First Front detector @280m
 - Neutrino intensity/direction
- Second Front Detector @ ~2km
 - Almost same E_n spectrum as for SK
 - Water Cherenkov can work
- Far detector @ 295km
 - Super-Kamiokande (50kt)

Measurement of sin² $2\theta_{23}$ - Δm_{23}^2

ve appearance in JHF-Kamioka

Background for v_e appearance search •Intrinsic v_e component in initial beam •Merged π^0 ring from v_u interactions

10% uncertainty for BG estimation

$sin^2 2\theta_{13}$ from v_e appearance

NuMI Off-Axis

Two possible sites

- Closer site, in Minnesota
 - About 711 km from Fermilab
 - Close to Soudan Laboratory
 - Unused former mine
 - Utilities available
 - Flexible regarding exact location
- Further site, in Canada, along Trans-Canada highway
 - About 985 km from Fermilab
 - There are two possibilities:
 - About 3 km to the west, south of Stewart Lodge
 - About 2 km to the east, at the gravel pit site, near compressor station

How the sensitivity to θ₁₃ depends on the CP phase?
 In case of null results, what we can say about future (JHF-HK, Neutrino Factory) expts?

Some remarks (see in the following for details)

- JHF-SK and NUMI off-axis are tuned to maximize discovery potential:
 - Energy tuned to maximum of oscillation probability
 - Enhance the dependence of subdominant terms to be sensitive to δ (CP phase)
 - Small dependence on matter effects (short baseline).
 - ⇒ Problems with JHF-SK and NUMI off-axis in case of null results because they run only with neutrinos
 (P.Huber, M.Lindner, W.Winter Nucl.Phys. B 645 (2002) 3)
 (T. Kajita, H. Minakata, H. Nunokawa Phys. Lett. B 528 (2002) 245)
- If JHF-SK and/or NUMI off-axis finds evidence of v_e appearance:
 - measure θ_{13} with high accuracy (see later) and future projects (JHF-HK, Neutrino Factories) will be based on solid grounds

Oscillation probability

$$P_{n_{m} \to n_{e}} \cong \sin^{2} 2q_{13} \sin^{2} q_{23} \frac{\sin^{2} \left[\left(1 - \hat{A} \right) \Delta \right]}{\left(1 - \hat{A} \right)^{2}}$$

$$- a \sin q_{13} x \sin d_{CP} \sin \Delta \frac{\sin \left(\hat{A} \Delta \right) \sin \left[\left(1 - \hat{A} \right) \Delta \right]}{\hat{A}}$$

$$+ a \sin q_{13} x \cos d_{CP} \cos \Delta \frac{\sin \left(\hat{A} \Delta \right) \sin \left[\left(1 - \hat{A} \right) \Delta \right]}{\hat{A}}$$

$$+ a^{2} \cos^{2} q_{23} \sin^{2} 2q_{12} \frac{\sin^{2} \left(\hat{A} \Delta \right)}{\hat{A}^{2}}$$

$$\equiv O_{1} + O_{2}(d) + O_{3}(d) + O_{4} \qquad a = \frac{\Delta m_{21}^{2}}{\left| \Delta m_{31}^{2} \right|}$$

Several observations

- The first and the forth terms are independent of the CP violating parameter δ
- If θ₁₃ is very small (= 1°) the second term (subdominant oscillation) competes with 1st
- For small θ_{13} , the CP terms are proportional to θ_{13} ; the first (non-CP term) to θ_{13}^2
- The CP violating terms grow with decreasing ${\rm E}_{\rm v}(\mbox{for a given L})$
- There is a strong correlation between different parameters
- CP violation is observable <u>only if all</u> angles ? O

- The measurement of θ_{13} is made complicated by the fact that oscillation probability is affected by matter effects and possible CP violation
- Because of this, there is not a unique mathematical relationship between oscillation probability and θ_{13}
- Especially for low values of θ_{13} , sensitivity of an experiment to seeing $\nu_{\mu} \rightarrow \nu_{e}$ depends very much on δ
- Several experiments with different conditions and with both v and v will be necessary to disentangle these effects
- θ₁₃ needs to be sufficiently large if one is to have a chance to investigate CP violation in v sector

JHF-SK were a "pure $\theta_{13} \exp$ " as reactors

Accelerator expts. sensitivity vs δ_{CP} (1)

There are δ_{CP} values for which the sensitivity on θ_{13} is even better than the one compute in the 2-flavor approximation (δ_{CP} =0).

Notice the different behaviour on Δm^2 of the CNGS sensitivity \Rightarrow Possible measurement of the sign of Δm^2_{31} ?

Accelerator expts. sensitivity vs δ_{CP} (2)

- Given the sensitivity dependence on δ_{CP} and sign of Δm_{31}^2 in case of null results two hypotheses
 - θ_{13} is too small \rightarrow give up JHF-HK and Neutrino Factory
 - δ_{CP} is positive and very large \rightarrow giving up JHF-HK and Neutrino Factory would be a tremendous mistake because after an anti-v run one would have a "monumental" signal

Sensitivity reduction of accelerator expts.

Conclusion in case of null result

- JHF-SK and NUMI off-axis will provide a excellent measurement of θ_{23} and $|\Delta m^2_{31}|$.
- The sensitivity of JHF-SK/NUMI off axis is comparable with the one of the CNGS program for high values of α and for certain values of $\delta_{\rm CP}$.

Of course, an additional anti- ν run would help in increasing the sensitivity of JHF-SK for large values of α .

Another possibility is to perform a pure θ_{13} measurement with reactors (H.Minakata et al. hep-ph/021111)

From G.L. Fogli et al. hep-ph/0212127

If
$$\nu_{\mu} \rightarrow \nu_{e}$$
 is observed

In the following: assume ICARUS and OPERA taking data from 2006 on

CNGS at the start-up of JHF-SK

- 3 years data taking at the CNGS
 - Sensitivity: $sin^2 2\theta_{13} < 0.035 @ 90\%$ C.L. (a factor 4 better than CHOOZ)
 - Indication (90% C.L) of ν_e appearance if θ_{13} > 7°

$ \theta_{13} _{true}$	$\theta_{13} _{min}$	$ \theta_{13} _{max}$	
1°		5.5°	
2.5°		5.8°	
5.0°		7.0°	
7 .5°	1.2°	11.4°	(7.5+3.9-6.3)°
10°	5.6°	13.7°	(10.+3.7-4.4)°

Allowed region in the θ_{13} - δ_{CP}

While JHF-SK is taking data, CNGS could do so as well. Therefore:

But ...

- ⇒At the end of the JHF-SK v-run one should combine it with 8 years at the CNGS
- Remind that the CNGS is an off-peak beam, therefore it has a different pattern from JHF-SK ⇒ they can be used in synergy

Note: After 5 years of data taking sacrifice the $\tau \to \mu$ channel in order to save bricks and scanning power -> scan only NC (25% of the total)

Allowed regions for JHF (5 years) + CNGS (8 years)

 $\theta_{13} = 10^{\circ}$

 $\theta_{13} = 5^{\circ}$

Conclusion in case ν_e appearance is observed

- If $\theta_{13} > 7^{\circ}$, CNGS could give a first indication of v_e appearance after three years data taking
- The CNGS is an off-peak beam, therefore it has a different pattern from JHF-SK ⇒ they can be used in synergy
 - We are investigating the possibility to constrain the sign of Δm^2
- After the completion of the approved CNGS program, one could continue the data taking

⇒ CNGS (8y) + JHF-SK(5y) could measure $θ_{13}$ with 20% accuracy and constrain $δ_{CP}$

Goals of 3rd generation of Long Baseline Experiments

- Precision measurement of PMNS matrix elements
- Discovery and measure non-zero δ_{CP} , and determine the mass hierarchy (if not done by 2st generation experiments)
 - several experiments with different running conditions will be required in order to disentangle the true solution from degenerate solutions
 - NB If θ_{13} < 1° impossible to assess CP violation in the leptonic sector. However, correlation effects could mimic small θ_{13} I.e. :
 - δ_{CP} is positive and very large \rightarrow giving up JHF-HK and Neutrino Factory would be a tremendous mistake because after an anti-v run one would have a "monumental" signal

Super-JHF(4MW)+Hyper-K(1Mt)

CERN/SPL

Proposed:

- Recycle LEP RF cavities into proton linac
- Proton kinetic energy: 2.2 GeV
- Power: 4 MW
- Protons/s=10¹⁶
- Outlook:
 - Feasibility study

R 100 800r

SPL Neutrino Beam

- Liquid Hg jet target
- 20 m decay tunnel
- Kaon production negligible
- Few ‰ n_e content
- E_v ~ 250 MeV

3

The β beam

- 1. Produce a radioactive ion with a short beta-decay lifetime
- 2. Accelerate the ion in a conventional way (PS) to "high" energy

- SINGLE flavour (v_e)

- Focussed $(1/\gamma)$

- 3. Store the ion in a decay ring with straight sections.
- 4. By its β -decay, ν_e ($\bar{\nu}_e$) will be produced.

Muons:

E_{cms}~34 MeV

g~500

QF~15

⁶He Beta-: g~150 E_{cms}~1.9 MeV QF~79

¹⁸Ne Beta+: g~250 E_{cms}~1.86 MeV QF~135

The "quality factor" $QF = \gamma/E_{cms}$ ($N_{int} \propto \gamma/E_{cms}$) is bigger than in a conventional neutrino factory. In addition, ion production and collection is easier. Then, 500000X more time to accelerate. Pasquale Migliozzi - INFN Napoli

- Known spectrum/intensity

- Low energy ($E_v = 58\hat{v} \text{ MeV}$)

The SPL and β -beam synergy

UNO detector

- Fiducial volume: 440 kton: 20 times SuperK.
- 60000 PMTs (20") in the inner detector,
 15000 PMTs in the outer veto detector.
- Energy resolution is poor for multitrack events but quite adequate for sub-GeV neutrino interactions.
- It would be hosted at the Frejus laboratory, 130 km from CERN, in a 10⁶ m³ cavern to be excavated.

The

killer detector for proton decay, atmospheric neutrinos, supernovae neutrinos.

Fluxes

	Fluxes @ 130 km	$< E_{\nu} >$	CC rate (no osc)	$< E_{\nu} >$	Years	Integrated events				
	$\nu/m^2/yr$	(GeV)	events/kton/yr	(GeV)		(440 kton $ imes$ 10 years)				
SPL Super Beam										
$ u_{\mu}$	$4.78 \cdot 10^{11}$	0.27	41.7	0.32	2	36698				
$\overline{ u}_{\mu}$	$3.33 \cdot 10^{11}$	0.25	6.6	0.30	8	23320				
Beta Beam										
$\overline{\nu}_e (\gamma = 60)$	$1.97 \cdot 10^{11}$	0.24	5.2	0.28	10	28880				
$\nu_{e} (\gamma = 100)$	$1.88 \cdot 10^{11}$	0.36	39.2	0.43	10	172683				

Beta Beam Backgrounds

Computed with a full simulation and reconstruction program. (Nuance + Dave Casper).

π from NC interactions

The main source of background comes from pions generated by resonant processes (Δ^{++} production) in NC interactions.

Pions cannot be separated from muons.

However the threshold for this process is $\simeq 400$ MeV.

Angular cuts have not be considered.

e/μ mis-identification

The full simulation shows that they can be kept well below $10^{-3} \; {\rm applying}$ the following criteria:

- One ring event.
- Standard SuperK particle identification with likelihood functions.
- A delayed decay electron.

Atmospheric neutrinos

Atmospheric neutrino background can be kept low only by a very short duty cycle of the Beta Beam. A reduction factor bigger than 10^3 is needed.

This is achieved by building 10 ns long lon bunches.

Optimizing the Lorentz Boost γ (L=130 km): preferred values: $\gamma = 55 \div 75$

Higher γ produce more CC interactions

More collimated neutrino production and higher cross

Background rate rises much faster than CC interactions

From resonant pion production in $\overline{\nu}_e$ NC interactions

 ν flux must match the CP-odd oscillating term

Detection efficiency as function of ν energy

Other sources of errors

Systematic errors: Beta Beam is the ideal place where to measure neutrino cross sections

- Neutrino flux and spectrum are completely defined by the parent ion characteristics and by the Lorentz boost γ.
- Only one neutrino flavour in the beam. in the storage ring.
- You can scan different γ values starting from below the Δ production threshold.
- A close detector can then measure neutrino cross sections with unprecedent precision

A 2% uncertitude level on the systematics will be assumed in the following.

Errors on the other parameters

 $p(\nu_{\mu} \rightarrow \nu_{e})$ depends from all the mixing matrix parameters: errors on parameters influence the sensitivity of a CP search.

At the time of BetaBeam

- JHF will have measured δm^2_{23} with a $\sim 10\%$ resolution and $\sin^2 2\theta_{23}$ with $1 \div 2\%$ resolution.
- Solar LMA parameters measured at $\sim 10\%$ precision level by Kamland (after 3 years, see hep-ph/0107277).

Only diagonal contributions from δm_{23}^2 , δm_{12}^2 and $\sin^2 \theta_{12}$ will be taken into account. Their contribution is anyway marginal.

Statistical method

If the number of events is greater than 12 use the classical gaussian chi2 with all the systematics included. If lower use the Poisson chi2, no systematic included. Given the above errors this approximation is largely acceptable.

The SuperBeam - BetaBeam synergy: CP, T and CPT

No other realistic scenario can offer CP, T and CPT searches at the same time in the same detector!!!!

CP Searches

- SuperBeam running with u_{μ} and $\overline{
 u}_{\mu}$.
- Beta Beam running with 6 He ($\overline{\nu}_{e}$) and 18 Ne (ν_{e}).

T searches

- Compare Super Beam $p(
 u_{\mu} \to
 u_{e})$ with Beta Beam 18 Ne $p(
 u_{e} \to
 u_{\mu})$
- Compare Super Beam $p(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ with Beta Beam ⁶He $p(\overline{\nu}_{e} \rightarrow \overline{\nu}_{\mu})$.

CPT searches

- Compare Super Beam $p(\nu_{\mu} \rightarrow \nu_{e})$ with Beta Beam ⁶He $p(\overline{\nu}_{e} \rightarrow \overline{\nu}_{\mu})$.
- Compare Super Beam p($\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$) with Beta Beam ¹⁸Ne $p(\nu_{e} \rightarrow \nu_{\mu})$

The SuperBeam - BetaBeam synergy: a benchmark on $heta_{13}$ sensitivity

Computed for $\delta_{CP} = 0$ and 5 years running.

- Super Beam $\rightarrow 96 \times$ CHOOZ.
- Super Beam + Beta Beam $\rightarrow 160 \times$ CHOOZ.
- Beta Beam can measure $heta_{13}$ both in appearance and in disappearance mode. All the ambiguities can be removed for $heta_{13} \geq 3.4^\circ$

Beta Beam - Super Beam synergy: CP sensitivity

SUPER BEAM ONLY

$\delta m_{12}^2 = 7 \cdot 10^{-5} \ eV^2, \theta_{13} = 1^\circ, \delta_{CP} = \pi/2$								
10 yrs (4400 kton/yr)	SuperBeam		Beta Beam					
	$ u_{\mu}$	$\overline{ u}_{\mu}$	$\overline{ u}_e$ (He 6)	$\nu_e~({\rm Ne}^{18})$				
	(2 yrs)	(8 yrs)	$\gamma = 60$	$\gamma = 100$				
CC events (no osc, no cut)	36698	23320	28880	172683				
Total oscillated	1.7	33.3	0.5	84.2				
CP-Odd oscillated	-25.5	16.9	-11.9	41				
Beam backgrounds	141	113	1	1				
Detector backgrounds	37	50	1	299				
Statistical Error	13.4	13.6	1.5	21.9				
Error on θ_{23}	2.1	1.7	0.5	4.7				
Error on δm^2_{12}	2.8	1.9	0.3	8.1				
Total Error	13.9	14.6	1.7	25.7				
Ambiguities

- The asymmetric statistics and background rates in the ν_e and $\overline{\nu}_e$ beams produce an asymmetric response to the positive and negative values of δ .
- Even if the matter effects are negligible, the $p(\nu_{\mu} \rightarrow \nu_{e})$ formula contains odd $sign(\delta m_{13}^{2})$ terms.
- The change of $\mathrm{sign}(\delta m_{13}^2)$ produces non negligible changes in the oscillation formula. No attempt made so far to fit $\mathrm{sign}(\delta m_{13}^2)$, θ_{13} and δ at the same time.
- Results are shown in the following for positive values of δ and $\mathrm{sign}(\delta m_{13}^2)$.

$$-\sin^2 2\theta_{23} = 1.0$$

$$- \ \delta m_{23}^2 = 2.5 \cdot 10^{-3} \ \mathrm{eV}^2.$$

$$-\sin^2 2\theta_{12} = 0.8$$

A comparison of CP sensitivities: Beta Beam vs. Nufact

CP sensitivity, defined as the capacity to separate at 99%CL max CP ($\delta = \pi/2$) from no CP ($\delta = 0$). Nufact sensitivity as computed in J. Burguet-Castell et al., Nucl. Phys. B 608 (2001) 301:

- 50 GeV/c μ.
- $2\cdot 10^{20}$ useful μ decays/year.
- 5+5 years.
- 2 iron magnetized detectors, 40 kton, at 3000 and 7000 km.
- Full detector simulation, including backgrounds and systematics.

Conclusion

- Neutrino Physics appears to be an exciting field for many years to come
- In the short period (less than 10 years) LBL experiments like CNGS, NuMI and (mainly) JHF
 - will measure some of the PMNS matrix elements ($\Delta m^2_{13'}$ $sin^2\theta_{23}$) with a per cent accuracy
 - will determine unambiguously the source of the atmospheric neutrino deficit (τ appearance)
 - have a good opportunity to observe for the first time the mixing angle $\theta^{}_{13}$ ($\geq 2^{\circ})$
- In the long term period, most likely several experiments with different running conditions will be required in order to disentangle the true solution from degenerate solutions and extract δ_{CP} and the mass hierarchy (unfortunately I had no time to discuss the dozens of proposals to solve the ambiguities, for details we refer to A. Donini, D. Meloni and P. Migliozzi Nucl. Phys. B646:321-349,2002 and references therein)