1. A perfectly focused monochromatic beam of π^+ at energy E_{π} is used to produce a conventional neutrino beam. Find the laboratory energy of ν_{μ} produced in π^+ decays to a function of only constants (e.g., masses, lifetimes, speed of light, etc.), E_{π} and θ , the angle between the beam and the outgoing neutrino in the laboratory frame. You may assume $E_{\pi} \gg m_{\pi}$ and $\theta \ll 1$.

For a perfectly focused beam containing a range of energies from E_0 to $2E_0$, at approximately what angle would the spread in neutrino energies be smallest?

(*Harder*): What is the ratio of neutrino production rates per unit solid angle at $\theta = \theta_1$ to that at $\theta = 0$?

2. For a conventional neutrino beam with typical neutrino energy $E_{\nu} > 1$ GeV, estimate the relative rate of quasi-elastic ν_e events to $\nu_{\mu}e^- \rightarrow \nu_{\mu}e^-$ events. (You may make a reasonable assumption about the ratio of flavors in the beam.)

How may these two classes of events be distinguished?